
Programs as interacting
objects Lecture 07.04

by Marina Barsky

star.py
ship.py
game.py

http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/starfield_code/star.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/starfield_code/ship.py
http://hope.simons-rock.edu/~mbarsky/intro18/lectures/objects/starfield_code/game.py

Star Field
game - idea

• The goal of the game is to
move the ship through
the starfield without
colliding with moving
stars

• Stars move on their own

• Ship is controlled by
arrow keys to avoid
collisions with the stars

• If ship collides with a star
– game over, player lost

• If ship makes it to the top
– game over, player won

Ship

Do it first in your imagination
(on a piece of paper)

X

Y

Goal

What objects do we need?

Game

player_ship: Ship
stars: [] Star

draw_all()
check_collision()

Ship

x
y
height
width
color
shape

move ()
draw ()

Contains

Star

draw ()

x
y
height
width
color
shape

class Star():

def __init__(self, canvas, w=12, h=6):

self.canvas = canvas

self.w = w

self.h = h

self.x = random.uniform(0, int(canvas.cget("width")))

self.y = random.randint(0, int(canvas.cget("height")) - 40)

self.dx = random.uniform(0.1, 0.6)

self.color = random.choice (["red", "blue", "green",

"yellow", "orange", "pink",

"magenta"])

def draw(self):

self.x += self.dx

Outline of a Star type
• What are the fields?
• How the fields are

initialized?
• How they are

updated?
• What are the

methods?

Star coordinate changes along X axis

What should happen when a star moves out
of the window?

class Star():

…

def draw(self):

self.x += self.dx

print ("Star of shape {} at {},{}".format(

self.shape, self.x, self.y)

Star moves to the right (x increases)
When x > = 800 (our canvas width) -
what should happen with the star
which we cannot see?

if self.x > canvas_w:

self.x -= canvas_w

Outline of a Ship type
class Ship:

def __init__ (self):

self.w = 28

self.h = 28

self.x = 800/ 2 - self.w/2

self.y = 600 - self.h

self.delta = 5

self.color = "white"

self.shape = "rectangle"

def move_right(self, event):

self.x += self.delta

def move_left(self, event): …

def move_up(self, event):

self.y -= self.delta

def move_down(self, event): …

def draw(self):

print ("Ship of shape {} at {},{}".format(

self.shape, self.x, self.y)

• What are the fields?
• What is initial position

of the ship?
• When the position

should be updated?
• What are the

methods?

Collaborate with tkinter canvas class

• In order to make the game playable, we need to connect it to the
drawing library

• We need to be able to actually draw our moving stars and the ship on
the screen and let the player to control the ship

• This can be done with many different packages:

• Turtle

• Pygame

…

• We will use the built-in tkinter package

• Note that tkinter contains multiple classes which hide the complexity of
actual drawing and user interaction under implemented methods, which
we can simply call

http://openbookproject.net/thinkcs/python/english3e/pygame.html

Drawing shapes: tkinter canvas

window = tk.Tk()

window.title("Test shapes")

frame = tk.Frame(window)

frame.pack()

canvas = tk.Canvas(frame)

canvas.pack()

canvas inside frame inside window canvas coordinate system

X

Y

Graphical User Interfaces (Going gooey)

• A graphical user interface (GUI) allows a user to interact with a computer
program using a keyboard or a pointing device that manipulates small
pictures on a computer screen

• The small pictures are called widgets

• We refer to programs that use a graphical user interface as “GUI
programs”

GUI programs are different

• A GUI program is very different from a program that uses a command
line interface which receives user input from typed characters on a
keyboard

• Typically programs that use a command line interface perform a series of
tasks in a predetermined order and then terminate

• GUI program creates the widgets that are displayed to a user and then it
simply waits for the user to interact with them

How to use tkinter properly

• The top-level class is window and can be created like this:

root = tkinter.Tk()

• The GUI has to be implemented as a class – in this case you will have
access to all widgets that you add to your top window, as they will
become the attributes of the same class, and can interact with each
other

• Always place all widgets inside a frame – not the top window

import tkinter as tk

class Game:

def __init__(self, num_stars=30):

self.window = tk.Tk()

self.window.title("Star Field Game")

self.window.resizable(0, 0)

frame = tk.Frame(self.window, bd=5, relief=tk.SUNKEN)

frame.pack()

self.canvas = tk.Canvas(frame, width=800, height=500)

self.canvas.configure(background='black')

self.canvas.pack()

We are going to call methods of the
window object – so store it inside
the Game object

We are never calling
the Frame object to do
anything for us – we
do not need to store
reference to it inside
the Game object

Adding widgets – nested under parent

import tkinter as tk

class Game:

def __init__(self, num_stars=30):

self.root = tk.Tk()

self.root.title("Star Field Game")

self.root.resizable(0, 0)

frame = tk.Frame(self.root, bd=5, relief=tk.SUNKEN)

frame.pack()

self.canvas = tk.Canvas(frame, width=800, height=500)

self.canvas.configure(background='black')

self.canvas.pack()

Added inside parent

Top window

Added inside parent

Sample code for all tkinter widgets from your textbook:
http://interactivepython.org/runestone/static/thinkcspy/_static/Programs/all_user_input_widgets.py

http://interactivepython.org/runestone/static/thinkcspy/_static/Programs/all_user_input_widgets.py

class Star():

def __init__(self, canvas, w=12, h=6):

…

self.color = random.choice (["red", "blue", "green",

"yellow", "orange", "pink",

"magenta"])

self.shape = self.canvas.create_rectangle(

…)

def draw(self):

self.x += self.dx

self.canvas.move(self.shape, self.dx, 0)

Making stars move on canvas

Doing rectangular starts –
they are simple

Stars move by themselves

Outline of a Game class
from ship import Ship

from star import Star

class Game:

def __init__(self, num_stars=30):

self.stars = []

for i in range(num_stars):

self.stars.append(Star())

self.main_ship = Ship()

def collision_with_stars(self, ship):

if collision of ship with any star:

return True

return False

def game_loop(self):

if self.collision_with_stars(self.main_ship):

destroy_ship, game over – player lost

elif self.player_ship.y <= 0: reached the top

destroy_ship, game over – player won

else:

self.player_ship.draw()

for i in range(len(self.stars)):

self.stars[i].draw()

• What are the fields in
class Game?

• What is the type of
these fields?

• What are the
methods?

Game class: collision of rectangles

class Game:

def __init__(self, num_stars=30):

…

def check_collision(self, ship):

def game_loop(self):

…

• When two rectangles
collide (intersect)?

• How to implement
collision detection?

x = ship.x

y = ship.y

w = ship.w

h = ship.h

for star in self.stars:

if not ((x + w) < star.x or

x > (star.x + star.w) or

(y + h) < star.y or

y > (star.y + star.h)):

return True

return False

x x+w
y

y+h

No collision possible on X

x x+w
y

y+h

No collision possible on Y

Adding event handlers
for arrow key press events

frame.bind('<Left>', self.player_ship.move_left)

frame.bind('<Right>', self.player_ship.move_right)

frame.bind('<Up>', self.player_ship.move_up)

frame.bind('<Down>', self.player_ship.move_down)

Event: pressing
left arrow key

What to do:
event handler

Finally: game loop
based on event loop implemented in tkinter
while True:

if self.player_ship:

if self.check_collision():

self.canvas.delete(self.player_ship.shape)

self.player_ship = None

self.canvas.create_text(200, 200, fill="white",

font="Times 20 italic",

text="Game over you lost.")

elif self.player_ship.y <= 0:

self.canvas.delete(self.player_ship.shape)

self.player_ship = None

self.canvas.create_text(200, 200, fill="white",

font="Times 20 bold",

text="Game over you won!")

else:

self.player_ship.draw()

for i in range(len(self.stars)):

self.stars[i].draw()

self.root.update_idletasks() # redraw

self.root.update() # process events

What did we gain by using Objects

• We can modify:

• shape of stars

• star speed

• star direction

• shape and color of the ship

• add more objects – such as missiles that ship can shoot while moving
through the star field

• All this without changing code in our Game class

Exercise: messing with the game

• First, play the game and lose

• Second, play the game and win: make all the way to the top without colliding
with the stars. If you want an easy win, in main() call Game constructor with 5
stars instead of 30

• Modify the Star class so that the width of the star is also selected at random:
between 20 and 100 pixels

• Try to modify the initial position of the main_ship by passing a start X coordinate
to the Ship class in the constructor of a Game class.

• Finally, add the second Ship object to the game (helper_ship)

• Add event handlers to move helper_ship using WASD keys.

• Add collision testing logic for the second ship as well.

• Update the test for winning condition (for example if one of the ships makes it to
the top, player wins).

• Now play the game with two ships and win!

