
Sequential types:
strings and lists

Lecture 02.05

by Marina Barsky

What types do you know?

converts anything to a string

gets the string’s length

str(42) returns '42'

len('42') returns 2

'XL' + 'II' returns 'XLII'

'VI'*7 returns 'VIVIVIVIVIVIVI'

concatenates strings

repeats strings

str

len

+

*

string functions and operators

converts anything to a string

gets the string’s length

str(42) returns '42'

len('42') returns 2

'XL' + 'II' returns 'XLII'

'VI'*7 returns 'VIVIVIVIVIVIVI'

concatenates strings

repeats strings

str

len

+

*

string functions and operators

s1 = "ha"

s2 = "t"
Given these strings

s1 + s2

2*s1 + s2 + 2*(s1+s2)

What are the following strings?

hat

hahathathat

String surgery

s[] indexes into the string, returning a one-character string

s[0] returns

s[8] returns

0 1 2 3 4 5 6 7 8 9 10 11 12

What returns 'n'?

python != English

s[len(s)] returns

index

len(s) returns

s = 'Python is fun'

s[11] returns

‘P’

‘s’

‘u’

s[5]

13

ERROR

s[12]

Negative indices…

s = 'Python is fun'
0 1 2 3 4 5 6 7 8 9 10 11 12

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

Negative indices count backwards from the end!

s[-1] returns

s[-10] returns

s[-0] returns

'n'

'h'

'P'

-13

s[:] slices the string, returning a substring

s[2:6]

s[0:4]

Slicing
what if you want a bigger

piece of the pie???

s[10:]

s[:]

the first index is the first

character of the slice

the second index is ONE

AFTER the last character

returns 'thon'

returns 'Pyth'

returns 'fun'

returns 'Python is fun'

s = 'Python is fun'
0 1 2 3 4 5 6 7 8 9 10 11 12

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

s[10:-1]

s[-6:-4]

What are

these

slices?

How do

you get:

'hon'

'honey'

Slicing

'fu'

'is'

s[3:6]

s[3:6] + 'ey'

s[:] slices the string, returning a substring

s = 'Python is fun'
0 1 2 3 4 5 6 7 8 9 10 11 12

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

s[0:10:2]

s[: :] skip-slices, returning a subsequence

Skip-Slicing
if you don't want your

neighbor to get any…

the third index is the "stride" length it defaults to 1

'tin'What skip-slice returns

s[0::7] + 'e'

s[12:9:-1]

s[::-1]

returns 'Pto s'

returns 'nuf'

s[2:13:5]

returns 'pie'

returns 'nuf si nohtyP'

s = 'Python is fun'
0 1 2 3 4 5 6 7 8 9 10 11 12

-1

-2

-3

-4

-5

-6

-7

-8

-9

-10

-11

-12

-13

Lists → collections of any data

L = [3.14, [2,40], 'third', 42]

Lists are more general than strings:
strings are always sequences of characters,
whereas lists can contain values of any type

Lists → collections of any data

L = [3.14, [2,40], 'third', 42]

Square brackets tell
python you want a list.

Commas separate
elements.

You can have a list
in a list!

L = [3.14, True, 'third', 42]

len, indexing, slicing

L = [3.14, [2,40], 'third', 42]

len(L) L[0] L[0:1]

slicing indexing length

'hi'
How could you

extract from L

List operators

+ *

Joins two lists

multiplicationconcatenation

Repeats list a number

of times

>>> P = [3.14, [2,40], 'third', 42]
>>> R = ['a','b','c']
>>> P + R
[3.14, [2, 40], 'third', 42, 'a', 'b', 'c']

>>> lst = [1,2,3]
>>> lst * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> 3*'i' in 'alien'

The in operator – membership testing
for lists and strings

>>> 'i' in 'team'

>>> 'cs' in 'physics'

>>> 'sleep' not in ‘CMPT 100'

>>> 42 in [41,42,43]

>>> 42 in [[42], '42']

>>>'i' in 'alien' True

False

False

True

True

True

False

Mutable and immutable sequences

Strings are immutable (read-only)

Once a string is created, individual
elements of string cannot be changed!

>>> st = 'ABC'

>>> st[0]

'A'

>>> st[0]='B'

Traceback (most recent call last):

File "<pyshell#33>", line 1, in <module>

st[0]='B'

TypeError: 'str' object does not support item

assignment

Mutable and immutable sequences

Lists are mutable (read and write)

Individual items or entire slices can be
replaced through assignment statements

>>> lst = ['A', 'B', 'C']
>>> lst
['A', 'B', 'C']
>>> lst[0] = 'B'
>>> lst
['B', 'B', 'C']

What is len(pi)

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

What slice of pi is [3,4,5]

What slice of pi is [3,1,4]

What is len(L)

What is len(L[1])

What is pi[2:4]

6

3

5

[4,1]

pi[0:3]

pi[::2]

Raising and razing lists -1

pi = [3,1,4,1,5,9]

L = ['pi', "isn't", [4,2]]

Raising and razing lists - 2

What is pi[0]*(pi[1:2] + pi[2:3])

15

[1,4,1,4,1,4]

What is pi[0]*(pi[1] + pi[2])

12

L = ['pi', "isn't", [4,2]]

M = 'You need parentheses for chemistry !'

What is M[::5]

What is M[9:15]

What is L[0]

What is L[0:1]

What is L[0][1]

What slice of M is 'try'

0 4 8 16 20 24 28 32

'pi'

['pi']

'i'

M[31:34]

'parent'

'Yeah cs!'

Raising and razing strings

