Sequential types: strings and lists
 Lecture 02.05
 by Marina Barsky

What types do you know?

string functions and operators

string functions and operators

str	str (42) returns '42' converts anything to a string
len	len ('42') returns 2 gets the string's length
+	'XL' + 'II' returns 'XIII' concatenates strings
*	'VI'*7 returns 'VIVIVIVIVIVIVI' repeats strings

Given these strings $\left\{\begin{array}{l}s 1=\text { "ha" } \\ s 2=\text { "t" }\end{array}\right.$
What are the following strings?

$$
\begin{array}{ll}
s 1+s 2 & \text { hat } \\
2 * s 1+s 2+2 *(s 1+s 2) & \text { hahathathat }
\end{array}
$$

String surgery

$\mathbf{s}={ }_{0}$ Python $_{1}$ is fun'

$\mathbf{S}[\underset{\text { index }}{[}]$ indexes into the string, returning a one-character string
$s[0]$ returns
$s[8]$ returns
s[11] returns What returns ' n '?
len(s) returns
s[len(s)] returns
'P'
'S'
'u'
$s[5] \quad s[12]$
13
ERROR

Negative indices...

Negative indices count backwards from the end!

$\mathbf{s}[-1]$	returns	' n '
$\mathbf{s}[-10]$	returns	h^{\prime}
$\mathbf{s}[-0]$	returns	${ }^{\mathrm{P}}{ }^{\prime}$

what if you want a bigger piece of the pie???

$\mathbf{S}[$: $] \quad$ slices the string, returning a substring
the first index is the first character of the slice

$$
\begin{array}{ll}
s[0: 4] & \text { returns 'Pyth' } \\
s[2: 6] & \text { returns 'thon' } \\
s[10:] & \text { returns 'fun' } \\
s[:] & \text { returns 'Python is fun' }
\end{array}
$$

AFTER the last character

Slicing

$\mathbf{S}[:]$ slices the string, returning a substring

What are these slices? s [10:-1] 'fu'

$s[-6:-4]$
'is'

How do
'hon'
'honey'

Skip-Slicing

if you don't want your neighbor to get any...

$\mathbf{s}[0: 10: 2]$	returns 'Pto s'
$\mathbf{s}[12: 9:-1]$	returns 'nuf'
What skip-slice returns 'tin'	$\mathrm{s}[2: 13: 5]$
$\mathbf{s}[0:: 7]+\mathrm{e}^{\prime}$	returns 'pie'
$\mathbf{s}[::-1]$	returns 'nuf si nohtyP'

Lists \rightarrow collections of any data

Lists are more general than strings:
strings are always sequences of characters, whereas lists can contain values of any type
$\mathrm{L}=[3.14,[2,40]$, 'third', 42]

Lists \rightarrow collections of any data

 elements.

Square brackets tell python you want a list.
$L=[3.14,[2,40], \quad$ third', 42$]$

You can have a list in a list!

len, indexing, slicing

$$
\mathrm{L}=[3.14,[2,40], \text { 'third', } 42]
$$

How could you extract from L
'hi'

List operators

$+$
 concatenation

Joins two lists

*
 multiplication

Repeats list a number of times
>>> Ist $=[1,2,3]$
>> Ist * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]
The in operator - membership testingfor lists and strings

```
>>>'i' in 'alien'
```

>>> 3*'i' in 'alien'
>>> 'i' in 'team'
>>> 'cs' in 'physics'
>>> 'sleep' not in 'CMPT 100'
>>> 42 in $[41,42,43]$
>>> 42 in [[42], '42']

True

False

False

True

True

True

False

Mutable and immutable sequences

Strings are immutable (read-only)

Once a string is created, individual elements of string cannot be changed!

```
>>> st = 'ABC'
>>> st[0]
    'A'
>>> st[0]='B'
Traceback (most recent call last):
    File "<pyshell#33>", line 1, in <module>
        st[0]='B'
TypeError: 'str' object does not support item
assignment
```


Mutable and immutable sequences

Lists are mutable (read and write)

Individual items or entire slices can be replaced through assignment statements

```
>>> Ist = ['A', 'B', 'C']
>>> Ist
['A', 'B', 'C']
>>> Ist[0] = 'B'
>>> Ist
['B', 'B', 'C']
```

Raising and razing lists -1

$$
\begin{aligned}
& \mathrm{pi}=[3,1,4,1,5,9] \\
& \mathrm{L}=[\text { 'pi', "isn't", }[4,2]]
\end{aligned}
$$

What is len(pi)
What is $\operatorname{len}(\mathrm{L})$
What is len(L[1])
What is pi[2:4]
[4,1]
What slice of $\mathbf{p i}$ is $[\mathbf{3}, \mathbf{1 , 4} \mathbf{4} \quad \mathrm{pi}[0: 3]$
What slice of $\mathbf{p i}$ is $[3,4,5] \quad \mathrm{pi}[:: 2]$

Raising and razing lists - 2

$$
\begin{aligned}
& \mathrm{pi}=[3,1,4,1,5,9] \\
& \mathrm{L}=[\text { 'pi', "isn't", }[4,2]]
\end{aligned}
$$

What is pi[0]*(pi[1] + pi[2]) 15
What is pi[0]*(pi[1:2] + pi[2:3]) [1,4,1,4,1,4]

Raising and razing strings

```
L = [ 'pi', "isn't", [4,2] ]
```


What is L[0]
What is $\mathrm{L}[0: 1]$
What is L[0][1]
What slice of \mathbf{M} is 'try'
What is $\mathbf{M}[9: 15]$
What is $\mathrm{M}[:: 5]$
'parent'
'Yeah cs!'

