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Poor Answers
Now that we are able to extract useful features from text, we can take on the 
challenge of building a 
website in Chapter 3, Clustering – Finding Related Posts, where users can submit 
questions and get them answered.

to encourage users with diverse possibilities to score content and offer badges and 
bonus points in order to encourage the users to spend more energy on carving out 
the question or crafting a possible answer.

 
to their question as the accepted answer (again there are incentives for the asker  

 

Would it not be very useful to the user to immediately see how good his answer is 

work-in-progress answer and provide feedback as to whether the answer shows 
some signs of a poor one. This will encourage the user to put more effort into writing 

overall system.

Let's build such a mechanism in this chapter.
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Sketching our roadmap
As we will build a system using real data that is very noisy, this chapter is not for the 

100 percent accuracy; often, even humans disagree whether an answer was good 

our initial goals on the way. But on the way, we will start with the nearest neighbor 
 

regression, and arrive at a solution that will achieve good enough prediction quality, 
but on a smaller part of the answers. Finally, we will spend some time looking at 
how to extract the winner to deploy it on the target system.

Learning to classify classy answers
classes, sometimes also called 

labels, for given data instances. To be able to achieve this, we need to answer  
two questions:

• 
• 

Tuning the instance
In its simplest form, in our case, the data instance is the text of the answer and the 
label would be a binary value indicating whether the asker accepted this text as an 
answer or not. Raw text, however, is a very inconvenient representation to process 
for most machine learning algorithms. They want numbers. And it will be our task to 
extract useful features from the raw text, which the machine learning algorithm can 
then use to learn the right label for it.

Once we have found or collected enough (text, label) pairs, we can train a . 

each of them having advantages and drawbacks. Just to name some of the more 
prominent choices, there are logistic regression, decision trees, SVMs, and Naïve 
Bayes. In this chapter, we will contrast the instance-based method from the last 
chapter, nearest neighbor, with model-based logistic regression.
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Fetching the data
Luckily for us, the  behind the 

At the time of writing this book, the latest data dump can be found at https://
archive.org/details/stackexchange

we only need the stackoverflow.com-Posts.7z

After downloading and extracting it, we have around 26 GB of data in the format of 
XML, containing all questions and answers as individual row tags within the root 
tag posts:

<?xml version="1.0" encoding="utf-8"?>

<posts>

...

  <row Id="4572748" PostTypeId="2" ParentId="4568987"  
CreationDate="2011-01-01T00:01:03.387" Score="4" ViewCount=""  
Body="&lt;p&gt;IANAL, but &lt;a  
href=&quot;http://support.apple.com/kb/HT2931&quot;  
rel=&quot;nofollow&quot;&gt;this&lt;/a&gt; indicates to me that you  
cannot use the loops in your  
application:&lt;/p&gt;&#xA;&#xA;&lt;blockquote&gt;&#xA;   
&lt;p&gt;...however, individual audio loops may&#xA;  not be  
commercially or otherwise&#xA;  distributed on a standalone basis,  
nor&#xA;  may they be repackaged in whole or in&#xA;  part as audio  
samples, sound effects&#xA;  or music beds.&quot;&lt;/p&gt;&#xA;   
&#xA;  &lt;p&gt;So don't worry, you can make&#xA;  commercial music  
with GarageBand, you&#xA;  just can't distribute the loops as&#xA;   
loops.&lt;/p&gt;&#xA;&lt;/blockquote&gt;&#xA;" OwnerUserId="203568"  
LastActivityDate="2011-01-01T00:01:03.387" CommentCount="1" />

…

</posts>

Name Type Description
Id Integer This is a unique identifier.
PostTypeId Integer This describes the category of the post. The values 

interesting to us are the following:
• 
• Answer

Other values will be ignored.
ParentId Integer This is a unique identifier of the question to which 

this answer belongs (missing for questions).
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Name Type Description
CreationDate DateTime This is the date of submission.
Score Integer This is the score of the post.
ViewCount Integer 

or empty
This is the number of user views for this post.

Body String This is the complete post as encoded HTML text.
OwnerUserId Id This is a unique identifier of the poster. If 1, then it 

is a wiki question.
Title String This is the title of the question (missing for 

answers).
AcceptedAnswerId Id This is the ID for the accepted answer (missing for 

answers).
CommentCount Integer This is the number of comments for the post.

Slimming the data down to chewable chunks
To speed up our experimentation phase, we should not try to evaluate our 

trim it down so that we still keep a representable snapshot of it while being able to 
row tags that have a creation date of, 

for example, 2012, we still end up with over 6 million posts (2,323,184 questions and 
4,055,999 answers), which should be enough to pick our training data from for now. 
We also do not want to operate on the XML format as it will slow us down, too. 
The simpler the format, the better. That's why we parse the remaining XML using 
Python's cElementTree

Preselection and processing of attributes
To cut down the data even more, we can certainly drop attributes that we think will 

we have to be cautious here. Although some features are not directly impacting the 

The PostTypeId attribute, for example, is necessary to distinguish between questions 

the data.

CreationDate could be interesting to determine the time span between posting the 
question and posting the individual answers, so we keep it. The Score is of course 
important as an indicator for the community's evaluation.
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ViewCount, in contrast, is most likely of no use for our task. Even if it would help the 

at the time when an answer is being submitted. Drop it!

The Body attribute obviously contains the most important information. As it is 
encoded HTML, we will have to decode to plain text.

OwnerUserId is only useful if we take user-dependent features in to account, which 
we won't. Although we drop it here, we encourage you to use it to build a better 

stackoverflow.com-Users.7z).

The Title attribute is also ignored here, although it could add some more 
information about the question.

CommentCount is also ignored. Similar to ViewCount  

AcceptedAnswerId is similar to Score in that it is an indicator of a post's quality. 
As we will access this per answer, instead of keeping this attribute, we will create 
the new attribute IsAccepted, which is 0 or 1 for answers and ignored for questions 
(ParentId=-1).

We end up with the following format:

Id <TAB> ParentId <TAB> IsAccepted <TAB> TimeToAnswer <TAB> Score  
<TAB> Text

For the concrete parsing details, please refer to so_xml_to_tsv.py and choose_
instance.py

meta.json, we store a dictionary mapping a post's Id value to 
its other data except Text in JSON format so that we can read it in the proper format. 
For example, the score of a post would reside at meta[Id]['Score']. In data.tsv, we 
store the Id and Text values, which we can easily read with the following method:

    def fetch_posts():

        for line in open("data.tsv", "r"):

            post_id, text = line.split("\t")

            yield int(post_id), text.strip()
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Before we 
have to create the training data. So far, we only have a bunch of data. What we still 

We could, of course, simply use the IsAccepted attribute as a label. After all, that 
marks the answer that answered the question.  However, that is only the opinion  

 answer. If over time more answers are submitted, some of them will tend to 
be better than the already accepted one. The asker, however, seldom gets back to 
the question and changes his mind. So we end up with many questions that have 
accepted answers that are not scored highest.

At the other extreme, we could simply always take the best and worst scored answer 
per question as positive and negative examples. However, what do we do with 
questions that have only good answers, say, one with two and the other with four 

We should settle somewhere between these extremes. If we take all answers that 
are scored higher than zero as positive and all answers with zero or less points as 
negative, we end up with quite reasonable labels:

>>> all_answers = [q for q,v in meta.items() if v['ParentId']!=-1]

>>> Y = np.asarray([meta[answerId]['Score']>0 for answerId in  
all_answers])

Let's start with the simple and beautiful nearest neighbor method from the previous 
chapter. Although it is not as advanced as other methods, it is very powerful: as it 
is not model-based, it can learn nearly any data. But this beauty comes with a clear 

Starting with kNN
This time, we won't implement it ourselves, but rather take it from the sklearn 

sklearn.neighbors. Let's start with a simple 

>>> from sklearn import neighbors

>>> knn = neighbors.KNeighborsClassifier(n_neighbors=2)

>>> print(knn)
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KNeighborsClassifier(algorithm='auto', leaf_size=30,  
metric='minkowski', n_neighbors=2, p=2, weights='uniform')

It provides the same interface as all other estimators in sklearn: we train it using 
fit(), after which we can predict the class of new data instances using predict():

>>> knn.fit([[1],[2],[3],[4],[5],[6]], [0,0,0,1,1,1])

>>> knn.predict(1.5)

array([0])

>>> knn.predict(37)

array([1])

>>> knn.predict(3)

array([0])

To get the class probabilities, we can use predict_proba(). In this case of having 
two classes, 0 and 1, it will return an array of two elements:

>>> knn.predict_proba(1.5)

array([[ 1.,  0.]])

>>> knn.predict_proba(37)

array([[ 0.,  1.]])

>>> knn.predict_proba(3.5)

array([[ 0.5,  0.5]])

Engineering the features
So, what 

TimeToAnswer is already there in our meta dictionary, but it probably won't provide 
much value on its own. Then there is only Text, but in its raw form, we cannot pass 

dirty (and fun!) work of extracting features from it.

What we could do is check the number of HTML links in the answer as a proxy for 
quality. Our hypothesis would be that more hyperlinks in an answer indicate better 
answers and thus a higher likelihood of being up-voted. Of course, we want to only 
count links in normal text and not code examples:

import re

code_match = re.compile('<pre>(.*?)</pre>',

                        re.MULTILINE | re.DOTALL)

link_match = re.compile('<a href="http://.*?".*?>(.*?)</a>', 
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                        re.MULTILINE | re.DOTALL)

tag_match = re.compile('<[^>]*>', 

                        re.MULTILINE | re.DOTALL)

def extract_features_from_body(s):

    link_count_in_code = 0

    # count links in code to later subtract them 

    for match_str in code_match.findall(s):

        link_count_in_code += len(link_match.findall(match_str))

    

    return len(link_match.findall(s)) – link_count_in_code

For production systems, we would not want to parse HTML 
content with regular expressions. Instead, we should rely on 
excellent libraries such as BeautifulSoup, which does a marvelous 
job of robustly handling all the weird things that typically occur in 
everyday HTML.

With this in place, we can generate one feature per answer. But before we train 

impression with the frequency distribution of our new feature. This can be done by 
plotting the percentage of how often each value occurs in the data. Have a look at the 
following plot:
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With the majority of posts having no link at all, we know now that this feature will 

of where we are.

We have to pass Y to the 

X = np.asarray([extract_features_from_body(text) for post_id, text in  
                fetch_posts() if post_id in all_answers])

knn = neighbors.KNeighborsClassifier()

knn.fit(X, Y)

k=5) to 

really have no clue what the right k should be. Once we have more insight, we will 
have a better idea of how to set k.

We have to be clear about what we want to measure. The naïve but easiest way is to 
simply calculate the average prediction quality over the test set. This will result in a 
value between 0 for predicting everything wrongly and 1 for perfect prediction. The 
accuracy can be obtained through knn.score().

But as we learned in the previous chapter, we will not do it just once, but apply 
cross-validation here using the readymade KFold class from sklearn.cross_
validation. Finally, we will then average the scores on the test set of each fold  
and see how much it varies using standard deviation:

from sklearn.cross_validation import KFold

scores = []

cv = KFold(n=len(X), k=10, indices=True)

for train, test in cv:

    X_train, y_train = X[train], Y[train]

    X_test, y_test = X[test], Y[test]

    clf = neighbors.KNeighborsClassifier()

    clf.fit(X, Y)
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    scores.append(clf.score(X_test, y_test))

print("Mean(scores)=%.5f\tStddev(scores)=%.5f"\

      %(np.mean(scores), np.std(scores)))

Here is the output:

Mean(scores)=0.50250    Stddev(scores)=0.055591

Now that is far from being usable. With only 55 percent accuracy, it is not much 
better than tossing a coin. Apparently, the number of links in a post is not a very 
good indicator for the quality of a post. So, we can say that this feature does not  
have much discriminative power—at least not for kNN with k=5.

Designing more features
In addition to using the number of hyperlinks as a proxy for a post's quality, the 
number of code lines is possibly another good one, too. At least it is a good indicator 

embedded in the <pre>…</pre> tag. And once we have it extracted, we should count 
the number of words in the post while ignoring code lines:

def extract_features_from_body(s):

    num_code_lines = 0

    link_count_in_code = 0

    code_free_s = s

    # remove source code and count how many lines

    for match_str in code_match.findall(s):

        num_code_lines += match_str.count('\n')

        code_free_s = code_match.sub("", code_free_s)

        # Sometimes source code contains links, 

        # which we don't want to count

        link_count_in_code += len(link_match.findall(match_str))

    links = link_match.findall(s)

    link_count = len(links)

    link_count -= link_count_in_code

    html_free_s = re.sub(" +", " ", 

www.it-ebooks.info



Chapter 5

[ 105 ]

          tag_match.sub('',  code_free_s)).replace("\n", "")

    link_free_s = html_free_s

    # remove links from text before counting words

    for link in links:

        if link.lower().startswith("http://"):

            link_free_s = link_free_s.replace(link,'')

    num_text_tokens = html_free_s.count(" ")

    return num_text_tokens, num_code_lines, link_count

Looking at them, we notice that at least the number of words in a post shows  
higher variability:

Training on the bigger feature space improves accuracy quite a bit:

Mean(scores)=0.59800    Stddev(scores)=0.02600
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But still, this would mean that we would classify roughly 4 out of 10 wrong. At least 
we are going in the right direction. More features lead to higher accuracy, which 
leads us to adding more features. Therefore, let's extend the feature space by even 
more features:

• AvgSentLen: This measures the average number of words in a sentence. 
Maybe there is a pattern that particularly good posts don't overload the 

• AvgWordLen: Similar to AvgSentLen, this feature measures the average 
number of characters in the words of a post.

• NumAllCaps: This measures the number of words that are written in 
uppercase, which is considered bad style.

• NumExclams: This measures the number of exclamation marks.

The following charts show the value distributions for average sentence and word 
lengths and number of uppercase words and exclamation marks:
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With these four additional features, we now have seven features representing the 
individual posts. Let's see how we progress:

Mean(scores)=0.61400    Stddev(scores)= 0.02154

Now, that's interesting. We added four more features and don't get anything in 

To understand this, we have to remind ourselves how kNN works. Our 5NN 

features, LinkCount, NumTextTokens, NumCodeLines, AvgSentLen, AvgWordLen, 
NumAllCaps, and NumExclams
post's class is then the majority of the classes of those nearest posts. The nearest 
posts are determined by calculating the Euclidean distance (as we did not specify 

p=2, which is the parameter in the 
Minkowski distance). That means that all seven features are treated similarly. kNN 
does not really learn that, for instance, NumTextTokens is good to have but much less 
important than NumLinks. Let's consider the following two posts A and B that only 
differ in the following features and how they compare to a new post:

Post
A 2 20
B 0 25
new 1 23

Although we would think that links provide more value than mere text, post B 
would be considered more similar to the new post than post A.

Clearly, kNN has a hard time in correctly using the available data.

Deciding how to improve
To improve on this, we basically have the following options:

• Add more data: Maybe it is just not enough data for the learning algorithm 

• Play with the model complexity
k so 

that it would take less nearest neighbors into account and thus be better in 
predicting non-smooth data. Or we could increase it to achieve the opposite.

www.it-ebooks.info



[ 108 ]

• Modify the feature space
We could, for example, change the scale of our current features or design 
even more new features. Or should we rather remove some of our current 

• Change the model: Maybe kNN is in general not a good fit for our use case 
such that it will never be capable of achieving good prediction performance, 
no matter how complex we allow it to be and how sophisticated the feature 

In real life, at this point, people often try to improve the current performance by 
randomly picking one of the these options and trying them out in no particular 

here, but it will surely take longer than making informed decisions. Let's take the 
informed route, for which we need to introduce the bias-variance tradeoff.

In Chapter 1, Getting Started with Python Machine Learning
of different complexities controlled by the dimensionality parameter d

example data very well, because the data was not of linear nature. No matter how 

see everything as a straight line. We say that it is too biased for the data at hand. It is 

We played a bit with the dimensions and found out that the 100-dimensional 

not know about train-test splits at that time). However, we quickly found out that it 

samples of the data points, we would have gotten totally different 100-dimensional 
polynomials. We say that the model has a too high variance for the given data, or 

These are the extremes between which most of our machine learning problems 
reside. Ideally, we want to have both, low bias and low variance. But, we are in  
a bad world, and have to tradeoff between them. If we improve on one, we will 
likely get worse on the other.

Fixing high bias
Let's now assume we suffer from high bias. In that case, adding more training data 
clearly does not help. Also, removing features surely will not help, as our model 
would have already been overly simplistic.
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The only possibilities we have in this case are to get more features, make the model 
more complex, or change the model.

Fixing high variance
If, on the contrary, we suffer from high variance, that means that our model is too 
complex for the data. In this case, we can only try to get more data or decrease the 
complexity. This would mean to increase k so that more neighbors would be taken 
into account or to remove some of the features.

High bias or low bias
errors over the data size.

High bias is typically revealed by the test error decreasing a bit at the beginning, but 
then settling at a very high value with the train error approaching with a growing 
dataset size. High variance is recognized by a big gap between both curves.

Plotting the errors for different dataset sizes for 5NN shows a big gap between train 
and test errors, hinting at a high variance problem:
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Looking at the graph, we immediately see that adding more training data will  
not help, as the dashed line corresponding to the test error seems to stay above 0.4. 
The only option we have is to decrease the complexity, either by increasing k or by 
reducing the feature space.

LinkCount and NumTextTokens:

We get similar graphs for other smaller feature sets. No matter what subset of 
features we take, the graph would look similar.

At least reducing the model complexity by increasing k shows some positive impact:

mean(scores) stddev(scores)
40 0.62800 0.03750
10 0.62000 0.04111
5 0.61400 0.02154
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performance. Take, for instance, k=40, where we have a very low test error. To 

whether the new post is a good one or not:

Clearly, it seems to be an issue with using nearest neighbor for our scenario. And it 
has another real disadvantage. Over time, we will get more and more posts into our 
system. As the nearest neighbor method is an instance-based approach, we will have 
to store all posts in our system. The more we get, the slower the prediction will be. 
This is different with model-based approaches, where one tries to derive a model 
from the data.

There we are, with enough reasons now to abandon the nearest neighbor approach 

whether there is the one golden feature we just did not happen to think of. But for 
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Using logistic regression
Contrary to its name, logistic regression 
powerful one when it comes to  
doing a regression on a logistic function, hence the name.

A bit of math with a small example
To get an

X plotted 
with the corresponding classes, 0 or 1. As we can see, the data is noisy such that 
classes overlap in the feature value range between 1 and 6. Therefore, it is better to 
not directly model the discrete classes, but rather the probability that a feature value 
belongs to class 1, P(X). Once we possess such a model, we could then predict class 1 
if , and class 0 otherwise.

as is the case here with our discrete labels 0 and 1. We can, however, tweak the 
probabilities a bit so that they always stay between 0 and 1. And for that, we will 
need the odds ratio and the logarithm of it.
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Let's say a feature has the probability of 0.9 that it belongs to class 1, . The 
odds ratio is then . We could say that the chance is 9:1 that 
this feature maps to class 1. If , we would consequently have a 1:1 chance 

(the left graph in the following set of graphs). If we now take the logarithm of it, we 
can map all probabilities between 0 and 1 to the full range from negative to positive 

maintain the relationship that higher probability leads to a higher log of odds, just 
not limited to 0 and 1 anymore.

This means that we 
have one and a constant, but that will change soon) to the  values. In a 
sense, we replace the linear from Chapter 1, Getting Started with Python Machine 

Learning, 0 1i iy c c x= +  with 0 11
i

i

plog c c x
p

⎛ ⎞
= +⎜ ⎟−⎝ ⎠

 (replacing y with log(odds)).

We can solve this for pi, so that we have ( )0 1

1
1 ii c c xp
e− +

=
+

.

errors for all our (xi, pi) pairs in our data set, but that will be done by scikit-learn.

x that 
belongs to class 1:

>>> from sklearn.linear_model import LogisticRegression

>>> clf = LogisticRegression()

>>> print(clf)
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LogisticRegression(C=1.0, class_weight=None, dual=False,  
fit_intercept=True, intercept_scaling=1, penalty=l2, tol=0.0001)

>>> clf.fit(X, y)

>>> print(np.exp(clf.intercept_), np.exp(clf.coef_.ravel()))

[ 0.09437188] [ 1.80094112]

>>> def lr_model(clf, X):

...     return 1 / (1 + np.exp(-(clf.intercept_ + clf.coef_*X)))

>>> print("P(x=-1)=%.2f\tP(x=7)=%.2f"%(lr_model(clf, -1),  
lr_model(clf, 7)))

P(x=-1)=0.05    P(x=7)=0.85

intercept_.

Applying logistic regression to our post 

Admittedly, the example in the previous section was created to show the beauty of 
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k=40) as a baseline, we see that it 
performs a bit better, but also won't change the situation a whole lot.

Method mean(scores) stddev(scores)
LogReg C=0.1 0.64650 0.03139
LogReg C=1.00  0.64650 0.03155
LogReg C=10.00 0.64550 0.03102
LogReg C=0.01 0.63850 0.01950
40NN 0.62800 0.03750

We have shown the accuracy for different values of the regularization parameter 
C. With it, we can control the model complexity, similar to the parameter k for the 
nearest neighbor method. Smaller values for C result in more penalization of the 
model complexity.

A quick look at the bias-variance chart for one of our best candidates, C=0.1, shows 
that our model has high bias—test and train error curves approach closely but stay 
at unacceptable high values. This indicates that logistic regression with the current 
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More and more it seems that either the data is too noisy for this task or that our set of 
features is still not appropriate to discriminate the classes well enough.

Looking behind accuracy – precision and 
recall
Let's step back and think again about what we are trying to achieve here. Actually, 

 that perfectly predicts good and bad answers as we 

good at predicting one class, we could adapt the feedback to the user accordingly. If 

could show helpful comments to the user at the beginning and remove them when 

which situation we are here, we have to understand how to measure 
precision and recall. And to understand that, we have to look into the four distinct 

Classified as
Positive Negative

In reality 
it is

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

indeed is positive in reality, this is a true positive instance. If on the other hand the 

positive, that instance is said to be a false negative.

What we want is to have a high success rate when we are predicting a post as either 
good or bad, but not necessarily both. That is, we want as much true positives as 
possible. This is what precision captures:

TPPrecision
TP FP

=
+
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If instead our goal would have been to detect as much good or bad answers as 
possible, we would be more interested in recall:

TPRecall
TP FN

=
+

In terms of the following graphic, precision is the fraction of the intersection of the 
right circle while recall is the fraction of the intersection of the left circle:

 
as the threshold to decide whether an answer is good or not. What we can do now  
is count the number of TP, FP, and FN while varying that threshold between 0 and 1. 
With those counts, we can then plot precision over recall.

The handy function precision_recall_curve() from the metrics module does all 
the calculations for us:

>>> from sklearn.metrics import precision_recall_curve

>>> precision, recall, thresholds = precision_recall_curve(y_test,  
    clf.predict(X_test))
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Predicting one class with acceptable performance does not always mean that 

following two plots, where we plot the precision/recall curves for classifying bad 
(the left graph) and good (the right graph) answers:

In the graphs, we have also included a much better description of 
area under curve (AUC). It can be 

We see that we can basically forget predicting bad answers (the left plot). Precision 
drops to a very low recall and stays at an unacceptably low 60 percent.

Predicting good answers, however, shows that we can get above 80 percent precision 

KFold() a 

too good in order to get a realistic view. Let's call it the medium clone:

>>> medium = np.argsort(scores)[int(len(scores) / 2)]

>>> thresholds = np.hstack(([0],thresholds[medium]))

>>> idx80 = precisions>=0.8

>>> print("P=%.2f R=%.2f thresh=%.2f" % (precision[idx80][0],  
                                      recall[idx80][0], threshold[idx80]
[0]))

P=0.80 R=0.37 thresh=0.59
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Setting the threshold at 0.59, we see that we can still achieve a precision of 80 
percent detecting good answers when we accept a low recall of 37 percent. That 
means that we would detect only one in three good answers as such. But from that 
third of good answers that we manage to detect, we would be reasonably sure that 
they are indeed good. For the rest, we could then politely display additional hints on 
how to improve answers in general.

To apply this threshold in the prediction process, we have to use predict_proba(), 
which returns per class probabilities, instead of predict(), which returns the  
class itself:

>>> thresh80 = threshold[idx80][0]

>>> probs_for_good = clf.predict_proba(answer_features)[:,1]

>>> answer_class = probs_for_good>thresh80

classification_report:

>>> from sklearn.metrics import classification_report

>>> print(classification_report(y_test, clf.predict_proba [:,1]>0.63,  
    target_names=['not accepted', 'accepted']))

            precision    recall  f1-score   support

not accepted         0.59      0.85      0.70       101

accepted             0.73      0.40      0.52        99

avg / total          0.66      0.63      0.61       200

Note that using the threshold will not guarantee that we are 
always above the precision and recall values that we determined 
above together with its threshold.
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It is always worth looking at the actual contributions of the individual features. 
clf.coef_) 

the more the feature plays a role in determining whether the post is good or 

We see that LinkCount, AvgWordLen, NumAllCaps, and NumExclams have the biggest 
NumImages (a feature that we 

sneaked in just for demonstration purposes a second ago) and AvgSentLen play a 
rather minor role. While the feature importance overall makes sense intuitively, it is 
surprising that NumImages is basically ignored. Normally, answers containing images 
are always rated high. In reality, however, answers very rarely have images. So, 
although in principal it is a very powerful feature, it is too sparse to be of any value. 
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Ship it!

we can simply serialize 

>>> import pickle

>>> pickle.dump(clf, open("logreg.dat", "w"))

>>> clf = pickle.load(open("logreg.dat", "r"))

Summary
Of course, we had to be pragmatic and adapt our initial goal to what was achievable. 
But on the way we learned about strengths and weaknesses of nearest neighbor 
and logistic regression. We learned how to extract features such as LinkCount, 
NumTextTokens, NumCodeLines, AvgSentLen, AvgWordLen, NumAllCaps, NumExclams, 
and NumImages

But what is even more valuable is that we learned an informed way of how to debug 

systems much faster.

After having looked into nearest neighbor and logistic regression, in the next  

algorithm: Naïve Bayes. Along the way, we will also learn some more convenient 
tools from scikit-learn.
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