
[95]

Poor Answers
Now that we are able to extract useful features from text, we can take on the
challenge of building a
website in Chapter 3, Clustering – Finding Related Posts, where users can submit
questions and get them answered.

to encourage users with diverse possibilities to score content and offer badges and
bonus points in order to encourage the users to spend more energy on carving out
the question or crafting a possible answer.

to their question as the accepted answer (again there are incentives for the asker

Would it not be very useful to the user to immediately see how good his answer is

work-in-progress answer and provide feedback as to whether the answer shows
some signs of a poor one. This will encourage the user to put more effort into writing

overall system.

Let's build such a mechanism in this chapter.

www.it-ebooks.info

[96]

Sketching our roadmap
As we will build a system using real data that is very noisy, this chapter is not for the

100 percent accuracy; often, even humans disagree whether an answer was good

our initial goals on the way. But on the way, we will start with the nearest neighbor

regression, and arrive at a solution that will achieve good enough prediction quality,
but on a smaller part of the answers. Finally, we will spend some time looking at
how to extract the winner to deploy it on the target system.

Learning to classify classy answers
classes, sometimes also called

labels, for given data instances. To be able to achieve this, we need to answer
two questions:

•
•

Tuning the instance
In its simplest form, in our case, the data instance is the text of the answer and the
label would be a binary value indicating whether the asker accepted this text as an
answer or not. Raw text, however, is a very inconvenient representation to process
for most machine learning algorithms. They want numbers. And it will be our task to
extract useful features from the raw text, which the machine learning algorithm can
then use to learn the right label for it.

Once we have found or collected enough (text, label) pairs, we can train a .

each of them having advantages and drawbacks. Just to name some of the more
prominent choices, there are logistic regression, decision trees, SVMs, and Naïve
Bayes. In this chapter, we will contrast the instance-based method from the last
chapter, nearest neighbor, with model-based logistic regression.

www.it-ebooks.info

Chapter 5

[]

Fetching the data
Luckily for us, the behind the

At the time of writing this book, the latest data dump can be found at https://
archive.org/details/stackexchange

we only need the stackoverflow.com-Posts.7z

After downloading and extracting it, we have around 26 GB of data in the format of
XML, containing all questions and answers as individual row tags within the root
tag posts:

<?xml version="1.0" encoding="utf-8"?>

<posts>

...

 <row Id="4572748" PostTypeId="2" ParentId="4568987"
CreationDate="2011-01-01T00:01:03.387" Score="4" ViewCount=""
Body="<p>IANAL, but <a
href="http://support.apple.com/kb/HT2931"
rel="nofollow">this indicates to me that you
cannot use the loops in your
application:</p>

<blockquote>

<p>...however, individual audio loops may
 not be
commercially or otherwise
 distributed on a standalone basis,
nor
 may they be repackaged in whole or in
 part as audio
samples, sound effects
 or music beds."</p>

 <p>So don't worry, you can make
 commercial music
with GarageBand, you
 just can't distribute the loops as

loops.</p>
</blockquote>
" OwnerUserId="203568"
LastActivityDate="2011-01-01T00:01:03.387" CommentCount="1" />

…

</posts>

Name Type Description
Id Integer This is a unique identifier.
PostTypeId Integer This describes the category of the post. The values

interesting to us are the following:
•
• Answer

Other values will be ignored.
ParentId Integer This is a unique identifier of the question to which

this answer belongs (missing for questions).

www.it-ebooks.info

[98]

Name Type Description
CreationDate DateTime This is the date of submission.
Score Integer This is the score of the post.
ViewCount Integer

or empty
This is the number of user views for this post.

Body String This is the complete post as encoded HTML text.
OwnerUserId Id This is a unique identifier of the poster. If 1, then it

is a wiki question.
Title String This is the title of the question (missing for

answers).
AcceptedAnswerId Id This is the ID for the accepted answer (missing for

answers).
CommentCount Integer This is the number of comments for the post.

Slimming the data down to chewable chunks
To speed up our experimentation phase, we should not try to evaluate our

trim it down so that we still keep a representable snapshot of it while being able to
row tags that have a creation date of,

for example, 2012, we still end up with over 6 million posts (2,323,184 questions and
4,055,999 answers), which should be enough to pick our training data from for now.
We also do not want to operate on the XML format as it will slow us down, too.
The simpler the format, the better. That's why we parse the remaining XML using
Python's cElementTree

Preselection and processing of attributes
To cut down the data even more, we can certainly drop attributes that we think will

we have to be cautious here. Although some features are not directly impacting the

The PostTypeId attribute, for example, is necessary to distinguish between questions

the data.

CreationDate could be interesting to determine the time span between posting the
question and posting the individual answers, so we keep it. The Score is of course
important as an indicator for the community's evaluation.

www.it-ebooks.info

Chapter 5

[99]

ViewCount, in contrast, is most likely of no use for our task. Even if it would help the

at the time when an answer is being submitted. Drop it!

The Body attribute obviously contains the most important information. As it is
encoded HTML, we will have to decode to plain text.

OwnerUserId is only useful if we take user-dependent features in to account, which
we won't. Although we drop it here, we encourage you to use it to build a better

stackoverflow.com-Users.7z).

The Title attribute is also ignored here, although it could add some more
information about the question.

CommentCount is also ignored. Similar to ViewCount

AcceptedAnswerId is similar to Score in that it is an indicator of a post's quality.
As we will access this per answer, instead of keeping this attribute, we will create
the new attribute IsAccepted, which is 0 or 1 for answers and ignored for questions
(ParentId=-1).

We end up with the following format:

Id <TAB> ParentId <TAB> IsAccepted <TAB> TimeToAnswer <TAB> Score
<TAB> Text

For the concrete parsing details, please refer to so_xml_to_tsv.py and choose_
instance.py

meta.json, we store a dictionary mapping a post's Id value to
its other data except Text in JSON format so that we can read it in the proper format.
For example, the score of a post would reside at meta[Id]['Score']. In data.tsv, we
store the Id and Text values, which we can easily read with the following method:

 def fetch_posts():

 for line in open("data.tsv", "r"):

 post_id, text = line.split("\t")

 yield int(post_id), text.strip()

www.it-ebooks.info

[100]

Before we
have to create the training data. So far, we only have a bunch of data. What we still

We could, of course, simply use the IsAccepted attribute as a label. After all, that
marks the answer that answered the question. However, that is only the opinion

 answer. If over time more answers are submitted, some of them will tend to
be better than the already accepted one. The asker, however, seldom gets back to
the question and changes his mind. So we end up with many questions that have
accepted answers that are not scored highest.

At the other extreme, we could simply always take the best and worst scored answer
per question as positive and negative examples. However, what do we do with
questions that have only good answers, say, one with two and the other with four

We should settle somewhere between these extremes. If we take all answers that
are scored higher than zero as positive and all answers with zero or less points as
negative, we end up with quite reasonable labels:

>>> all_answers = [q for q,v in meta.items() if v['ParentId']!=-1]

>>> Y = np.asarray([meta[answerId]['Score']>0 for answerId in
all_answers])

Let's start with the simple and beautiful nearest neighbor method from the previous
chapter. Although it is not as advanced as other methods, it is very powerful: as it
is not model-based, it can learn nearly any data. But this beauty comes with a clear

Starting with kNN
This time, we won't implement it ourselves, but rather take it from the sklearn

sklearn.neighbors. Let's start with a simple

>>> from sklearn import neighbors

>>> knn = neighbors.KNeighborsClassifier(n_neighbors=2)

>>> print(knn)

www.it-ebooks.info

Chapter 5

[101]

KNeighborsClassifier(algorithm='auto', leaf_size=30,
metric='minkowski', n_neighbors=2, p=2, weights='uniform')

It provides the same interface as all other estimators in sklearn: we train it using
fit(), after which we can predict the class of new data instances using predict():

>>> knn.fit([[1],[2],[3],[4],[5],[6]], [0,0,0,1,1,1])

>>> knn.predict(1.5)

array([0])

>>> knn.predict(37)

array([1])

>>> knn.predict(3)

array([0])

To get the class probabilities, we can use predict_proba(). In this case of having
two classes, 0 and 1, it will return an array of two elements:

>>> knn.predict_proba(1.5)

array([[1., 0.]])

>>> knn.predict_proba(37)

array([[0., 1.]])

>>> knn.predict_proba(3.5)

array([[0.5, 0.5]])

Engineering the features
So, what

TimeToAnswer is already there in our meta dictionary, but it probably won't provide
much value on its own. Then there is only Text, but in its raw form, we cannot pass

dirty (and fun!) work of extracting features from it.

What we could do is check the number of HTML links in the answer as a proxy for
quality. Our hypothesis would be that more hyperlinks in an answer indicate better
answers and thus a higher likelihood of being up-voted. Of course, we want to only
count links in normal text and not code examples:

import re

code_match = re.compile('<pre>(.*?)</pre>',

 re.MULTILINE | re.DOTALL)

link_match = re.compile('(.*?)',

www.it-ebooks.info

[102]

 re.MULTILINE | re.DOTALL)

tag_match = re.compile('<[^>]*>',

 re.MULTILINE | re.DOTALL)

def extract_features_from_body(s):

 link_count_in_code = 0

 # count links in code to later subtract them

 for match_str in code_match.findall(s):

 link_count_in_code += len(link_match.findall(match_str))

 return len(link_match.findall(s)) – link_count_in_code

For production systems, we would not want to parse HTML
content with regular expressions. Instead, we should rely on
excellent libraries such as BeautifulSoup, which does a marvelous
job of robustly handling all the weird things that typically occur in
everyday HTML.

With this in place, we can generate one feature per answer. But before we train

impression with the frequency distribution of our new feature. This can be done by
plotting the percentage of how often each value occurs in the data. Have a look at the
following plot:

www.it-ebooks.info

Chapter 5

[103]

With the majority of posts having no link at all, we know now that this feature will

of where we are.

We have to pass Y to the

X = np.asarray([extract_features_from_body(text) for post_id, text in
 fetch_posts() if post_id in all_answers])

knn = neighbors.KNeighborsClassifier()

knn.fit(X, Y)

k=5) to

really have no clue what the right k should be. Once we have more insight, we will
have a better idea of how to set k.

We have to be clear about what we want to measure. The naïve but easiest way is to
simply calculate the average prediction quality over the test set. This will result in a
value between 0 for predicting everything wrongly and 1 for perfect prediction. The
accuracy can be obtained through knn.score().

But as we learned in the previous chapter, we will not do it just once, but apply
cross-validation here using the readymade KFold class from sklearn.cross_
validation. Finally, we will then average the scores on the test set of each fold
and see how much it varies using standard deviation:

from sklearn.cross_validation import KFold

scores = []

cv = KFold(n=len(X), k=10, indices=True)

for train, test in cv:

 X_train, y_train = X[train], Y[train]

 X_test, y_test = X[test], Y[test]

 clf = neighbors.KNeighborsClassifier()

 clf.fit(X, Y)

www.it-ebooks.info

[104]

 scores.append(clf.score(X_test, y_test))

print("Mean(scores)=%.5f\tStddev(scores)=%.5f"\

 %(np.mean(scores), np.std(scores)))

Here is the output:

Mean(scores)=0.50250 Stddev(scores)=0.055591

Now that is far from being usable. With only 55 percent accuracy, it is not much
better than tossing a coin. Apparently, the number of links in a post is not a very
good indicator for the quality of a post. So, we can say that this feature does not
have much discriminative power—at least not for kNN with k=5.

Designing more features
In addition to using the number of hyperlinks as a proxy for a post's quality, the
number of code lines is possibly another good one, too. At least it is a good indicator

embedded in the <pre>…</pre> tag. And once we have it extracted, we should count
the number of words in the post while ignoring code lines:

def extract_features_from_body(s):

 num_code_lines = 0

 link_count_in_code = 0

 code_free_s = s

 # remove source code and count how many lines

 for match_str in code_match.findall(s):

 num_code_lines += match_str.count('\n')

 code_free_s = code_match.sub("", code_free_s)

 # Sometimes source code contains links,

 # which we don't want to count

 link_count_in_code += len(link_match.findall(match_str))

 links = link_match.findall(s)

 link_count = len(links)

 link_count -= link_count_in_code

 html_free_s = re.sub(" +", " ",

www.it-ebooks.info

Chapter 5

[105]

 tag_match.sub('', code_free_s)).replace("\n", "")

 link_free_s = html_free_s

 # remove links from text before counting words

 for link in links:

 if link.lower().startswith("http://"):

 link_free_s = link_free_s.replace(link,'')

 num_text_tokens = html_free_s.count(" ")

 return num_text_tokens, num_code_lines, link_count

Looking at them, we notice that at least the number of words in a post shows
higher variability:

Training on the bigger feature space improves accuracy quite a bit:

Mean(scores)=0.59800 Stddev(scores)=0.02600

www.it-ebooks.info

[106]

But still, this would mean that we would classify roughly 4 out of 10 wrong. At least
we are going in the right direction. More features lead to higher accuracy, which
leads us to adding more features. Therefore, let's extend the feature space by even
more features:

• AvgSentLen: This measures the average number of words in a sentence.
Maybe there is a pattern that particularly good posts don't overload the

• AvgWordLen: Similar to AvgSentLen, this feature measures the average
number of characters in the words of a post.

• NumAllCaps: This measures the number of words that are written in
uppercase, which is considered bad style.

• NumExclams: This measures the number of exclamation marks.

The following charts show the value distributions for average sentence and word
lengths and number of uppercase words and exclamation marks:

www.it-ebooks.info

Chapter 5

[]

With these four additional features, we now have seven features representing the
individual posts. Let's see how we progress:

Mean(scores)=0.61400 Stddev(scores)= 0.02154

Now, that's interesting. We added four more features and don't get anything in

To understand this, we have to remind ourselves how kNN works. Our 5NN

features, LinkCount, NumTextTokens, NumCodeLines, AvgSentLen, AvgWordLen,
NumAllCaps, and NumExclams
post's class is then the majority of the classes of those nearest posts. The nearest
posts are determined by calculating the Euclidean distance (as we did not specify

p=2, which is the parameter in the
Minkowski distance). That means that all seven features are treated similarly. kNN
does not really learn that, for instance, NumTextTokens is good to have but much less
important than NumLinks. Let's consider the following two posts A and B that only
differ in the following features and how they compare to a new post:

Post
A 2 20
B 0 25
new 1 23

Although we would think that links provide more value than mere text, post B
would be considered more similar to the new post than post A.

Clearly, kNN has a hard time in correctly using the available data.

Deciding how to improve
To improve on this, we basically have the following options:

• Add more data: Maybe it is just not enough data for the learning algorithm

• Play with the model complexity
k so

that it would take less nearest neighbors into account and thus be better in
predicting non-smooth data. Or we could increase it to achieve the opposite.

www.it-ebooks.info

[108]

• Modify the feature space
We could, for example, change the scale of our current features or design
even more new features. Or should we rather remove some of our current

• Change the model: Maybe kNN is in general not a good fit for our use case
such that it will never be capable of achieving good prediction performance,
no matter how complex we allow it to be and how sophisticated the feature

In real life, at this point, people often try to improve the current performance by
randomly picking one of the these options and trying them out in no particular

here, but it will surely take longer than making informed decisions. Let's take the
informed route, for which we need to introduce the bias-variance tradeoff.

In Chapter 1, Getting Started with Python Machine Learning
of different complexities controlled by the dimensionality parameter d

example data very well, because the data was not of linear nature. No matter how

see everything as a straight line. We say that it is too biased for the data at hand. It is

We played a bit with the dimensions and found out that the 100-dimensional

not know about train-test splits at that time). However, we quickly found out that it

samples of the data points, we would have gotten totally different 100-dimensional
polynomials. We say that the model has a too high variance for the given data, or

These are the extremes between which most of our machine learning problems
reside. Ideally, we want to have both, low bias and low variance. But, we are in
a bad world, and have to tradeoff between them. If we improve on one, we will
likely get worse on the other.

Fixing high bias
Let's now assume we suffer from high bias. In that case, adding more training data
clearly does not help. Also, removing features surely will not help, as our model
would have already been overly simplistic.

www.it-ebooks.info

Chapter 5

[109]

The only possibilities we have in this case are to get more features, make the model
more complex, or change the model.

Fixing high variance
If, on the contrary, we suffer from high variance, that means that our model is too
complex for the data. In this case, we can only try to get more data or decrease the
complexity. This would mean to increase k so that more neighbors would be taken
into account or to remove some of the features.

High bias or low bias
errors over the data size.

High bias is typically revealed by the test error decreasing a bit at the beginning, but
then settling at a very high value with the train error approaching with a growing
dataset size. High variance is recognized by a big gap between both curves.

Plotting the errors for different dataset sizes for 5NN shows a big gap between train
and test errors, hinting at a high variance problem:

www.it-ebooks.info

[110]

Looking at the graph, we immediately see that adding more training data will
not help, as the dashed line corresponding to the test error seems to stay above 0.4.
The only option we have is to decrease the complexity, either by increasing k or by
reducing the feature space.

LinkCount and NumTextTokens:

We get similar graphs for other smaller feature sets. No matter what subset of
features we take, the graph would look similar.

At least reducing the model complexity by increasing k shows some positive impact:

mean(scores) stddev(scores)
40 0.62800 0.03750
10 0.62000 0.04111
5 0.61400 0.02154

www.it-ebooks.info

Chapter 5

[111]

performance. Take, for instance, k=40, where we have a very low test error. To

whether the new post is a good one or not:

Clearly, it seems to be an issue with using nearest neighbor for our scenario. And it
has another real disadvantage. Over time, we will get more and more posts into our
system. As the nearest neighbor method is an instance-based approach, we will have
to store all posts in our system. The more we get, the slower the prediction will be.
This is different with model-based approaches, where one tries to derive a model
from the data.

There we are, with enough reasons now to abandon the nearest neighbor approach

whether there is the one golden feature we just did not happen to think of. But for

www.it-ebooks.info

[112]

Using logistic regression
Contrary to its name, logistic regression
powerful one when it comes to
doing a regression on a logistic function, hence the name.

A bit of math with a small example
To get an

X plotted
with the corresponding classes, 0 or 1. As we can see, the data is noisy such that
classes overlap in the feature value range between 1 and 6. Therefore, it is better to
not directly model the discrete classes, but rather the probability that a feature value
belongs to class 1, P(X). Once we possess such a model, we could then predict class 1
if , and class 0 otherwise.

as is the case here with our discrete labels 0 and 1. We can, however, tweak the
probabilities a bit so that they always stay between 0 and 1. And for that, we will
need the odds ratio and the logarithm of it.

www.it-ebooks.info

Chapter 5

[113]

Let's say a feature has the probability of 0.9 that it belongs to class 1, . The
odds ratio is then . We could say that the chance is 9:1 that
this feature maps to class 1. If , we would consequently have a 1:1 chance

(the left graph in the following set of graphs). If we now take the logarithm of it, we
can map all probabilities between 0 and 1 to the full range from negative to positive

maintain the relationship that higher probability leads to a higher log of odds, just
not limited to 0 and 1 anymore.

This means that we
have one and a constant, but that will change soon) to the values. In a
sense, we replace the linear from Chapter 1, Getting Started with Python Machine

Learning, 0 1i iy c c x= + with 0 11
i

i

plog c c x
p

⎛ ⎞
= +⎜ ⎟−⎝ ⎠

 (replacing y with log(odds)).

We can solve this for pi, so that we have ()0 1

1
1 ii c c xp
e− +

=
+

.

errors for all our (xi, pi) pairs in our data set, but that will be done by scikit-learn.

x that
belongs to class 1:

>>> from sklearn.linear_model import LogisticRegression

>>> clf = LogisticRegression()

>>> print(clf)

www.it-ebooks.info

[114]

LogisticRegression(C=1.0, class_weight=None, dual=False,
fit_intercept=True, intercept_scaling=1, penalty=l2, tol=0.0001)

>>> clf.fit(X, y)

>>> print(np.exp(clf.intercept_), np.exp(clf.coef_.ravel()))

[0.09437188] [1.80094112]

>>> def lr_model(clf, X):

... return 1 / (1 + np.exp(-(clf.intercept_ + clf.coef_*X)))

>>> print("P(x=-1)=%.2f\tP(x=7)=%.2f"%(lr_model(clf, -1),
lr_model(clf, 7)))

P(x=-1)=0.05 P(x=7)=0.85

intercept_.

Applying logistic regression to our post

Admittedly, the example in the previous section was created to show the beauty of

www.it-ebooks.info

Chapter 5

[115]

k=40) as a baseline, we see that it
performs a bit better, but also won't change the situation a whole lot.

Method mean(scores) stddev(scores)
LogReg C=0.1 0.64650 0.03139
LogReg C=1.00 0.64650 0.03155
LogReg C=10.00 0.64550 0.03102
LogReg C=0.01 0.63850 0.01950
40NN 0.62800 0.03750

We have shown the accuracy for different values of the regularization parameter
C. With it, we can control the model complexity, similar to the parameter k for the
nearest neighbor method. Smaller values for C result in more penalization of the
model complexity.

A quick look at the bias-variance chart for one of our best candidates, C=0.1, shows
that our model has high bias—test and train error curves approach closely but stay
at unacceptable high values. This indicates that logistic regression with the current

www.it-ebooks.info

[116]

More and more it seems that either the data is too noisy for this task or that our set of
features is still not appropriate to discriminate the classes well enough.

Looking behind accuracy – precision and
recall
Let's step back and think again about what we are trying to achieve here. Actually,

 that perfectly predicts good and bad answers as we

good at predicting one class, we could adapt the feedback to the user accordingly. If

could show helpful comments to the user at the beginning and remove them when

which situation we are here, we have to understand how to measure
precision and recall. And to understand that, we have to look into the four distinct

Classified as
Positive Negative

In reality
it is

Positive True positive (TP) False negative (FN)
Negative False positive (FP) True negative (TN)

indeed is positive in reality, this is a true positive instance. If on the other hand the

positive, that instance is said to be a false negative.

What we want is to have a high success rate when we are predicting a post as either
good or bad, but not necessarily both. That is, we want as much true positives as
possible. This is what precision captures:

TPPrecision
TP FP

=
+

www.it-ebooks.info

Chapter 5

[]

If instead our goal would have been to detect as much good or bad answers as
possible, we would be more interested in recall:

TPRecall
TP FN

=
+

In terms of the following graphic, precision is the fraction of the intersection of the
right circle while recall is the fraction of the intersection of the left circle:

as the threshold to decide whether an answer is good or not. What we can do now
is count the number of TP, FP, and FN while varying that threshold between 0 and 1.
With those counts, we can then plot precision over recall.

The handy function precision_recall_curve() from the metrics module does all
the calculations for us:

>>> from sklearn.metrics import precision_recall_curve

>>> precision, recall, thresholds = precision_recall_curve(y_test,
 clf.predict(X_test))

www.it-ebooks.info

[118]

Predicting one class with acceptable performance does not always mean that

following two plots, where we plot the precision/recall curves for classifying bad
(the left graph) and good (the right graph) answers:

In the graphs, we have also included a much better description of
area under curve (AUC). It can be

We see that we can basically forget predicting bad answers (the left plot). Precision
drops to a very low recall and stays at an unacceptably low 60 percent.

Predicting good answers, however, shows that we can get above 80 percent precision

KFold() a

too good in order to get a realistic view. Let's call it the medium clone:

>>> medium = np.argsort(scores)[int(len(scores) / 2)]

>>> thresholds = np.hstack(([0],thresholds[medium]))

>>> idx80 = precisions>=0.8

>>> print("P=%.2f R=%.2f thresh=%.2f" % (precision[idx80][0],
 recall[idx80][0], threshold[idx80]
[0]))

P=0.80 R=0.37 thresh=0.59

www.it-ebooks.info

Chapter 5

[119]

Setting the threshold at 0.59, we see that we can still achieve a precision of 80
percent detecting good answers when we accept a low recall of 37 percent. That
means that we would detect only one in three good answers as such. But from that
third of good answers that we manage to detect, we would be reasonably sure that
they are indeed good. For the rest, we could then politely display additional hints on
how to improve answers in general.

To apply this threshold in the prediction process, we have to use predict_proba(),
which returns per class probabilities, instead of predict(), which returns the
class itself:

>>> thresh80 = threshold[idx80][0]

>>> probs_for_good = clf.predict_proba(answer_features)[:,1]

>>> answer_class = probs_for_good>thresh80

classification_report:

>>> from sklearn.metrics import classification_report

>>> print(classification_report(y_test, clf.predict_proba [:,1]>0.63,
 target_names=['not accepted', 'accepted']))

 precision recall f1-score support

not accepted 0.59 0.85 0.70 101

accepted 0.73 0.40 0.52 99

avg / total 0.66 0.63 0.61 200

Note that using the threshold will not guarantee that we are
always above the precision and recall values that we determined
above together with its threshold.

www.it-ebooks.info

[120]

It is always worth looking at the actual contributions of the individual features.
clf.coef_)

the more the feature plays a role in determining whether the post is good or

We see that LinkCount, AvgWordLen, NumAllCaps, and NumExclams have the biggest
NumImages (a feature that we

sneaked in just for demonstration purposes a second ago) and AvgSentLen play a
rather minor role. While the feature importance overall makes sense intuitively, it is
surprising that NumImages is basically ignored. Normally, answers containing images
are always rated high. In reality, however, answers very rarely have images. So,
although in principal it is a very powerful feature, it is too sparse to be of any value.

www.it-ebooks.info

Chapter 5

[121]

Ship it!

we can simply serialize

>>> import pickle

>>> pickle.dump(clf, open("logreg.dat", "w"))

>>> clf = pickle.load(open("logreg.dat", "r"))

Summary
Of course, we had to be pragmatic and adapt our initial goal to what was achievable.
But on the way we learned about strengths and weaknesses of nearest neighbor
and logistic regression. We learned how to extract features such as LinkCount,
NumTextTokens, NumCodeLines, AvgSentLen, AvgWordLen, NumAllCaps, NumExclams,
and NumImages

But what is even more valuable is that we learned an informed way of how to debug

systems much faster.

After having looked into nearest neighbor and logistic regression, in the next

algorithm: Naïve Bayes. Along the way, we will also learn some more convenient
tools from scikit-learn.

www.it-ebooks.info

www.it-ebooks.info

