
[219]

Computer Vision
Image analysis and computer vision have always been important in industrial

cameras and Internet connections, images now are increasingly generated by
consumers. Therefore, there are opportunities to make use of computer vision to
provide a better user experience in new contexts.

In this chapter, we will look at how to apply techniques you have learned in the rest

mahotas computer vision package to extract features from images. These features can

will apply these techniques to publicly available datasets of photographs. We will
also see how the same features can be used on another problem, that is, the problem

Finally, at the end of this chapter, we will learn about using local features. These

performance, the scale-invariant feature transform (SIFT), was introduced in 1999)
and achieve very good results in many tasks.

Introducing image processing
From the point of view of the computer, an image is a large rectangular array of pixel
values. Our goal is to process this image and to arrive at a decision for our application.

format, and the latter a lossy compression one that is optimized for visual assessment
of photographs. Then, we may wish to perform preprocessing on the images (for
example, normalizing them for illumination variations).

www.it-ebooks.info

Computer Vision

[220]

images. Therefore, we will use an intermediate representation, extracting numeric
features from the images before applying machine learning.

Loading and displaying images
In order to
mahotas from https://pypi.python.org/pypi/mahotas and read its manual
at http://mahotas.readthedocs.org. Mahotas is an open source package (MIT
license, so it can be used in any project) that was developed by one of the authors
of this book. Fortunately, it is based on NumPy. The NumPy knowledge you have
acquired so far can be used for image processing. There are other image packages,
such as scikit-image (skimage), the ndimage (n-dimensional image) module in
SciPy, and the Python bindings for OpenCV. All of these work natively with NumPy
arrays, so you can even mix and match functionality from different packages to build
a combined pipeline.

We start by importing mahotas, with the mh abbreviation, which we will use
throughout this chapter, as follows:

>>> import mahotas as mh

imread as follows:

>>> image = mh.imread('scene00.jpg')

The scene00.jpg
companion code repository) is a color image of height h and width w; the image will
be an array of shape (h, w, 3)

dimension, but this is the convention that is used by all NumPy-based packages. The
type of the array will typically be np.uint8 (an unsigned 8-bit integer). These are the
images that your camera takes or that your monitor can fully display.

images with higher bit resolution (that is, with more sensitivity to small variations in
brightness). Twelve or sixteen bits are common in this type of equipment. Mahotas

even if the original data is composed of unsigned integers, it is advantageous to

www.it-ebooks.info

Chapter 10

[221]

Mahotas can use a variety of different input/output backends.
Unfortunately, none of them can load all image formats that exist
(there are hundreds, with several variations of each). However,
loading PNG and JPEG images is supported by all of them. We
will focus on these common formats and refer you to the mahotas
documentation on how to read uncommon formats.

We can display the image on screen using matplotlib, the plotting library we have
already used several times, as follows:

>>> from matplotlib import pyplot as plt

>>> plt.imshow(image)

>>> plt.show()

As shown in the following, this code shows the image using the convention that

whole ecosystem working well together: mahotas works with NumPy arrays, which
can be displayed with matplotlib; later we will compute features from images to use
with scikit-learn.

www.it-ebooks.info

Computer Vision

[222]

Thresholding
Thresholding is a very simple operation: we transform all pixel values above a
certain threshold to 1 and all those below it to 0 (or by using Booleans, transform
it to True and False). The important question in thresholding is to select a good
value to use as the threshold limit. Mahotas implements a few methods for choosing
a threshold value from the image. One is called Otsu, after
necessary step is to convert the image to grayscale, with rgb2gray in the mahotas.
colors submodule.

Instead of rgb2gray, we could also have just the mean value of the red, green,
and blue channels, by callings image.mean(2). The result, however, would not
be the same, as rgb2gray uses different weights for the different colors to give a
subjectively more pleasing result. Our eyes are not equally sensitive to the three
basic colors.

>>> image = mh.colors.rgb2grey(image, dtype=np.uint8)

>>> plt.imshow(image) # Display the image

By default, matplotlib will display this single-channel image as a false color image,
using red for high values and blue for low values. For natural images, a grayscale

>>> plt.gray()

Now the image is shown in gray scale. Note that only the way in which the pixel
values are interpreted and shown has changed and the image data is untouched.
We can continue our processing by computing the threshold value:

>>> thresh = mh.thresholding.otsu(image)

>>> print('Otsu threshold is {}.'.format(thresh))

Otsu threshold is 138.

>>> plt.imshow(image > thresh)

www.it-ebooks.info

Chapter 10

[223]

which separates the ground from the sky above, as shown in the following image:

Gaussian blurring
Blurring your image may seem odd, but it often serves to reduce noise, which helps
with further processing. With mahotas, it is just a function call:

>>> im16 = mh.gaussian_filter(image, 16)

www.it-ebooks.info

Computer Vision

[224]

Notice that we did not convert the grayscale image to unsigned integers: we just
gaussian_

filter
values result in more blurring, as shown in the following screenshot:

www.it-ebooks.info

Chapter 10

[225]

We can use the screenshot on the left and threshold with Otsu (using the same
previous code). Now, the boundaries are smoother, without the jagged edges,
as shown in the following screenshot:

Putting the center in focus
The
an interesting result. We start with the Lena image and split it into the color channels:

>>> im = mh.demos.load('lena')

www.it-ebooks.info

Computer Vision

[226]

This is an image of a young woman that has been often for image processing demos.
It is shown in the following screenshot:

To split the red, green, and blue channels, we use the following code:

>>> r,g,b = im.transpose(2,0,1)

the three channels separately and build a composite image out of it
with mh.as_rgb. This function takes three two-dimensional arrays, performs contrast
stretching to make each be an 8-bit integer array, and then stacks them, returning a
color RGB image:

>>> r12 = mh.gaussian_filter(r, 12.)

>>> g12 = mh.gaussian_filter(g, 12.)

>>> b12 = mh.gaussian_filter(b, 12.)

>>> im12 = mh.as_rgb(r12, g12, b12)

Now, we blend the two images from the center away to the edges. First, we need to
build a weights array W, which will contain at each pixel a normalized value, which is
its distance to the center:

>>> h, w = r.shape # height and width

>>> Y, X = np.mgrid[:h,:w]

www.it-ebooks.info

Chapter 10

[]

We used the np.mgrid object, which returns arrays of size (h, w), with values
corresponding to the y and x coordinates, respectively. The next steps are as follows:

>>> Y = Y - h/2. # center at h/2

>>> Y = Y / Y.max() # normalize to -1 .. +1

>>> X = X - w/2.

>>> X = X / X.max()

We now use a Gaussian function to give the center region a high value:

>>> C = np.exp(-2.*(X**2+ Y**2))

>>> # Normalize again to 0..1

>>> C = C - C.min()

>>> C = C / C.ptp()

>>> C = C[:,:,None] # This adds a dummy third dimension to C

Notice how all of these manipulations are performed using NumPy arrays and not

have the center be in sharp focus and the edges softer:

>>> ringed = mh.stretch(im*C + (1-C)*im12)

www.it-ebooks.info

Computer Vision

[228]

We will start with a small dataset that was collected especially for this book. It has
three classes: buildings, natural scenes (landscapes), and pictures of texts. There are
30 images in each category, and they were all taken using a cell phone camera with
minimal composition. The images are similar to those that would be uploaded to
a modern website by users with no photography training. This dataset is available
from this book's website or the GitHub code repository. Later in this chapter, we will
look at a harder dataset with more images and more categories.

When classifying images, we start with a large rectangular array of numbers (pixel
values). Nowadays, millions of pixels are common. We could try to feed all these
numbers as features into the learning algorithm. This is not a very good idea. This is

result is very indirect. Also, having millions of pixels, but only as a small number
of example images, results in a very hard statistical learning problem. This is an
extreme form of the P greater than N type of problem we discussed in Chapter 7,
Regression. Instead, a good approach is to compute features from the image and use

Having said that, I will point out that, in fact, there are a few methods that do work
directly from the pixel values. They have feature computation submodules inside
them. They may even attempt to learn good features automatically. These methods
are the topic of current research. They typically work best with very large datasets
(millions of images).

We previously used an example of the scene class. The following are examples of the
text and building classes:

www.it-ebooks.info

Chapter 10

[229]

Computing features from images
With mahotas, it is very easy to compute features from images. There is a submodule
named mahotas.features, where feature computation functions are available.

A commonly used set of texture features is the Haralick. As with many methods in
image processing, the name is due to its inventor. These features are texture-based:
they distinguish between images that are smooth from those that are patterned, and
between different patterns. With mahotas, it is very easy to compute them as follows:

>>> haralick_features = mh.features.haralick(image)

>>> haralick_features_mean = np.mean(haralick_features, axis=0)

>>> haralick_features_all = np.ravel(haralick_features)

The mh.features.haralick
to four possible directions in which to compute the features (vertical, horizontal,

we can use the average over all the directions (shown in the earlier code as haralick_
features_mean). Otherwise, we can use all the features separately (using haralick_
features_all). This decision should be informed by the properties of the dataset.
In our case, we reason that the horizontal and vertical directions should be kept
separately. Therefore, we will use haralick_features_all.

There are a few other feature sets implemented in mahotas. Linear binary patterns
are another texture-based feature set, which is very robust against illumination
changes. There are other types of features, including local features, which we will
discuss later in this chapter.

With these
regression as follows:

>>> from glob import glob

>>> images = glob('SimpleImageDataset/*.jpg')

>>> features = []

>>> labels = []

>>> for im in images:

... labels.append(im[:-len('00.jpg')])

... im = mh.imread(im)

... im = mh.colors.rgb2gray(im, dtype=np.uint8)

... features.append(mh.features.haralick(im).ravel())

>>> features = np.array(features)

>>> labels = np.array(labels)

www.it-ebooks.info

Computer Vision

[230]

The three classes have very different textures. Buildings have sharp edges and big
blocks where the color is similar (the pixel values are rarely exactly the same, but
the variation is slight). Text is made of many sharp dark-light transitions, with small
black areas in a sea of white. Natural scenes have smoother variations with fractal-like

of the features as follows:

>>> from sklearn.pipeline import Pipeline

>>> from sklearn.preprocessing import StandardScaler

>>> from sklearn.linear_model import LogisticRegression

>>> clf = Pipeline([('preproc', StandardScaler()),

 ('classifier', LogisticRegression())])

Since our dataset is small, we can use leave-one-out regression as follows:

>>> from sklearn import cross_validation

>>> cv = cross_validation.LeaveOneOut(len(images))

>>> scores = cross_validation.cross_val_score(

... clf, features, labels, cv=cv)

>>> print('Accuracy: {:.1%}'.format(scores.mean()))

Accuracy: 81.1%

Eighty-one percent is not bad for the three classes (random guessing would
correspond to 33 percent). We can do better, however, by writing our own features.

Writing your own features
A feature is nothing magical. It is simply a number that we computed from an image.

added advantage that they have been designed and studied to be invariant to many
unimportant factors. For example, linear binary patterns are completely invariant
to multiplying all pixel values by a number or adding a constant to all these values.
This makes this feature set robust against illumination changes of images.

specially designed features.

A simple type of feature that is not shipped with mahotas is a color histogram.
Fortunately, this feature is easy to implement. A color histogram partitions the color
space into a set of bins, and then counts how many pixels fall into each of the bins.

www.it-ebooks.info

Chapter 10

[231]

The images are in RGB format, that is, each pixel has three values: R for red, G for
green, and B for blue. Since each of these components is an 8-bit value, the total is
17 million different colors. We are going to reduce this number to only 64 colors
by grouping colors into bins. We will write a function to encapsulate this algorithm
as follows:

def chist(im):

as follows:

 im = im // 64

This makes the pixel values range from 0 to 3, which gives a total of 64 different colors.

Separate the red, green, and blue channels as follows:

 r,g,b = im.transpose((2,0,1))

 pixels = 1 * r + 4 * b + 16 * g

 hist = np.bincount(pixels.ravel(), minlength=64)

 hist = hist.astype(float)

Convert to log scale, as seen in the following code snippet. This is not strictly
necessary, but makes for better features. We use np.log1p, which computes log(h+1).
This ensures that zero values are kept as zero values (mathematically, the logarithm

 hist = np.log1p(hist)

 return hist

We can adapt the previous processing code to use the function we wrote very easily:

>>> features = []

>>> for im in images:

... image = mh.imread(im)

... features.append(chist(im))

Using the same cross-validation code we used earlier, we obtain 90 percent accuracy.
The best results, however, come from combining all the features, which we can
implement as follows:

>>> features = []

>>> for im in images:

... imcolor = mh.imread(im)

... im = mh.colors.rgb2gray(imcolor, dtype=np.uint8)

www.it-ebooks.info

Computer Vision

[232]

... features.append(np.concatenate([

... mh.features.haralick(im).ravel(),

... chist(imcolor),

...]))

By using all of these features, we get 95.6 percent accuracy, as shown in the following
code snippet:

>>> scores = cross_validation.cross_val_score(

... clf, features, labels, cv=cv)

>>> print('Accuracy: {:.1%}'.format(scores.mean()))

Accuracy: 95.6%

This is a perfect illustration of the principle that good algorithms are the easy

scikit-learn. The real secret and added value often comes in feature design and
engineering. This is where knowledge of your dataset is valuable.

The basic concept of representing an image by a relatively small number of features

similar images to a given query image (as we did before with text documents).

We will compute the same features as before, with one important difference: we
will ignore the bordering area of the picture. The reason is that due to the amateur
nature of the compositions, the edges of the picture often contain irrelevant elements.
When the features are computed over the whole image, these elements are taken into
account. By simply ignoring them, we get slightly better features. In the supervised
example, it is not as important, as the learning algorithm will then learn which
features are more informative and weigh them accordingly. When working in an
unsupervised fashion, we need to be more careful to ensure that our features are
capturing important elements of the data. This is implemented in the loop as follows:

>>> features = []

>>> for im in images:

... imcolor = mh.imread(im)

... # ignore everything in the 200 pixels closest to the borders

... imcolor = imcolor[200:-200, 200:-200]

... im = mh.colors.rgb2gray(imcolor, dtype=np.uint8)

... features.append(np.concatenate([

www.it-ebooks.info

Chapter 10

[233]

... mh.features.haralick(im).ravel(),

... chist(imcolor),

...]))

We now normalize the features and compute the distance matrix as follows:

>>> sc = StandardScaler()

>>> features = sc.fit_transform(features)

>>> from scipy.spatial import distance

>>> dists = distance.squareform(distance.pdist(features))

We will plot just a subset of the data (every 10th element) so that the query will be on
top and the returned "nearest neighbor" at the bottom, as shown in the following:

>>> fig, axes = plt.subplots(2, 9)

>>> for ci,i in enumerate(range(0,90,10)):

... left = images[i]

... dists_left = dists[i]

... right = dists_left.argsort()

... # right[0] is same as left[i], so pick next closest

... right = right[1]

... right = images[right]

... left = mh.imread(left)

... right = mh.imread(right)

... axes[0, ci].imshow(left)

... axes[1, ci].imshow(right)

The result is shown in the following screenshot:

www.it-ebooks.info

Computer Vision

[234]

similar to the queries. In all but one case, the image found comes from the same class
as the query.

Classifying a harder dataset
The previous dataset
In fact, many of the problems that are interesting from a business point of view are
relatively easy. However, sometimes we may be faced with a tougher problem and
need better and more modern techniques to get good results.

We will now test a public dataset, which has the same structure: several photographs
split into a small number of classes. The classes are animals, cars, transportation, and
natural scenes.

When compared to the three class problem we discussed previously, these classes are
harder to tell apart. Natural scenes, buildings, and texts have very different textures.
In this dataset, however, texture and color are not as clear marker, of the image class.
The following is one example from the animal class:

And here is another example from the car class:

www.it-ebooks.info

Chapter 10

[235]

Both objects are against natural backgrounds, and with large smooth areas inside the
objects. This is a harder problem than the simple dataset, so we will need to use more

logistic regression, which contains an adjustable parameter, C. By default, C = 1.0,

parameter as follows:

>>> from sklearn.grid_search import GridSearchCV

>>> C_range = 10.0 ** np.arange(-4, 3)

>>> grid = GridSearchCV(LogisticRegression(), param_grid={'C' : C_range})

>>> clf = Pipeline([('preproc', StandardScaler()),

... ('classifier', grid)])

The data is not organized in a random order inside the dataset: similar images are close

that each fold has a more representative training set, as shown in the following:

>>> cv = cross_validation.KFold(len(features), 5,

... shuffle=True, random_state=123)

>>> scores = cross_validation.cross_val_score(

... clf, features, labels, cv=cv)

>>> print('Accuracy: {:.1%}'.format(scores.mean()))

Accuracy: 72.1%

This is not so bad for four classes, but we will now see if we can do better by using
a different set of features. In fact, we will see that we need to combine these features
with other methods to get the best possible results.

Local feature representations
A relatively recent development in the computer vision world has been the
development of local-feature based methods. Local features are computed on a small
region of the image, unlike the previous features we considered, which had been
computed on the whole image. Mahotas supports computing a type of these features,
Speeded Up Robust Features (SURF). There are several others, the most well-known
being the original proposal of SIFT. These features are designed to be robust against
rotational or illumination changes (that is, they only change their value slightly when
illumination changes).

www.it-ebooks.info

Computer Vision

[236]

When using these features, we have to decide where to compute them. There are
three possibilities that are commonly used:

• Randomly
• In a grid
• Detecting interesting areas of the image (a technique known as keypoint

detection or interest point detection)

All of these are valid and will, under the right circumstances, give good results.
Mahotas supports all three. Using interest point detection works best if you have a
reason to expect that your interest point will correspond to areas of importance in
the image.

We will be using the interest point method. Computing the features with mahotas is
easy: import the right submodule and call the surf.surf function as follows:

>>> from mahotas.features import surf

>>> image = mh.demos.load('lena')

>>> image = mh.colors.rgb2gray(im, dtype=np.uint8)

>>> descriptors = surf.surf(image, descriptor_only=True)

The descriptors_only=True means that we are only interested in the
descriptors themselves, and not in their pixel location, size, or orientation.
Alternatively, we could have used the dense sampling method, using the surf.
dense function as follows:

>>> from mahotas.features import surf

>>> descriptors = surf.dense(image, spacing=16)

This returns the value of the descriptors computed on points that are at a distance of

on the interest points is not very interesting and is not returned by default. In either
case, the result (descriptors) is an n-times-64 array, where n is the number of points
sampled. The number of points depends on the size of your images, their content, and
the parameters you pass to the functions. In this example, we are using the default
settings, and we obtain a few hundred descriptors per image.

We cannot directly feed these descriptors to a support vector machine, logistic

images, there are several solutions. We could just average them, but the results of

that case, we would have just another global feature set based on edge measurements.

www.it-ebooks.info

Chapter 10

[]

The solution we will use here is the bag of words model, which is a very recent idea.

ideas: it is very simple to implement and achieves very good results.

It may seem strange to speak of words when dealing with images. It may be easier
to understand if you think that you have not written words, which are easy to
distinguish from each other, but orally spoken audio. Now, each time a word is
spoken, it will sound slightly different, and different speakers will have their own
pronunciation. Thus, a word's waveform will not be identical every time it is spoken.
However, by using clustering on these waveforms, we can hope to recover most of
the structure so that all the instances of a given word are in the same cluster. Even
if the process is not perfect (and it will not be), we can still talk of grouping the
waveforms into words.

We perform the same operation with image data: we cluster together similar looking
regions from all images and call these visual words.

performance of the algorithm. Naturally, if the number is extremely small
(10 or 20, when you have a few thousand images), then the overall system
will not perform well. Similarly, if you have too many words (many more
than the number of images, for example), the system will also not perform
well. However, in between these two extremes, there is often a very large
plateau, where you can choose the number of words without a big impact
on the result. As a rule of thumb, using a value such as 256, 512, or 1,024 if
you have very many images should give you a good result.

We are going to start by computing the features as follows:

>>> alldescriptors = []

>>> for im in images:

... im = mh.imread(im, as_grey=True)

... im = im.astype(np.uint8)

... alldescriptors.append(surf.dense(image, spacing=16))

>>> # get all descriptors into a single array

>>> concatenated = np.concatenate(alldescriptors)

>>> print('Number of descriptors: {}'.format(

... len(concatenated)))

Number of descriptors: 2489031

www.it-ebooks.info

Computer Vision

[238]

This results in over 2 million local descriptors. Now, we use k-means clustering
to obtain the centroids. We could use all the descriptors, but we are going to use
a smaller sample for extra speed, as shown in the following:

>>> # use only every 64th vector

>>> concatenated = concatenated[::64]

>>> from sklearn.cluster import KMeans

>>> k = 256

>>> km = KMeans(k)

>>> km.fit(concatenated)

After this is done (which will take a while), the km object contains information about
the centroids. We now go back to the descriptors and build feature vectors as follows:

>>> sfeatures = []

>>> for d in alldescriptors:

... c = km.predict(d)

... sfeatures.append(

... np.array([np.sum(c == ci) for ci in range(k)])

...)

>>> # build single array and convert to float

>>> sfeatures = np.array(sfeatures, dtype=float)

The end result of this loop is that sfeatures[fi, fj] is the number of times that
the image fi contains the element fj. The same could have been computed faster
with the np.histogram function, but getting the arguments just right is a little tricky.

rounding semantics).

The result is that each image is now represented by a single array of features, of
the same size (the number of clusters, in our case 256). Therefore, we can use our

>>> scores = cross_validation.cross_val_score(

... clf, sfeatures, labels, cv=cv)

>>> print('Accuracy: {:.1%}'.format(scores.mean()))

Accuracy: 62.6%

www.it-ebooks.info

Chapter 10

[239]

In fact, we have, as we can combine all features together to obtain 76.1 percent
accuracy, as follows:

>>> combined = np.hstack([features, features])

>>> scores = cross_validation.cross_val_score(

... clf, combined, labels, cv=cv)

>>> print('Accuracy: {:.1%}'.format(scores.mean()))

Accuracy: 76.1%

This is the best result we have, better than any single feature set. This is due to the
fact that the local SURF features are different enough to add new information to the
global image features we had before and improve the combined result.

Summary
We learned the classical feature-based approach to handling images in a machine
learning context: by converting from a million pixels to a few numeric features, we

we learned in the other chapters suddenly become directly applicable to image

a dataset.

This is a very modern approach to computer vision and achieves good results while
being robust to many irrelevant aspects of the image, such as illumination, and
even uneven illumination in the same image. We also used clustering as a useful

We focused on mahotas, which is one of the major computer vision libraries in
Python. There are others that are equally well maintained. Skimage (scikit-image)
is similar in spirit, but has a different set of features. OpenCV is a very good C++
library with a Python interface. All of these can work with NumPy arrays and you
can mix and match functions from different libraries to build complex computer
vision pipelines.

In the next chapter, you will learn a different form of machine learning:
dimensionality reduction. As we saw in several earlier chapters, including when
using images in this chapter, it is very easy to computationally generate many
features. However, often we want to have a reduced number of features for speed
and visualization, or to improve our results. In the next chapter, we will see how to
achieve this.

www.it-ebooks.info

www.it-ebooks.info

