
C H A P T E R 8

Support Vector Machines

Back in Chapter 3 we looked at the Perceptron, a set of McCulloch and Pitts neurons
arranged in a single layer. We identified a method by which we could modify the weights
so that the network learned, and then saw that the Perceptron was rather limited in that
it could only identify straight line classifiers, that is, it could only separate out groups of
data if it was possible to draw a straight line (hyperplane in higher dimensions) between
them. This meant that it could not learn to distinguish between the two truth classes of
the 2D XOR function. However, in Section 3.4.3, we saw that it was possible to modify the
problem so that the Perceptron could solve the problem, by changing the data so that it
used more dimensions than the original data.

This chapter is concerned with a method that makes use of that insight, amongst other
things. The main idea is one that we have seen before, in Section 5.3, which is to modify the
data by changing its representation. However, the terminology is different here, and we will
introduce kernel functions rather than bases. In principle, it is always possible to transform
any set of data so that the classes within it can be separated linearly. To get a bit of a
handle on this, think again about what we did with the XOR problem in Section 3.4.3: we
added an extra dimension and moved a point that we could not classify properly into that
additional dimension so that we could linearly separate the classes. The problem is how to
work out which dimensions to use, and that is what kernel methods, which is the class of
algorithms that we will talk about in this chapter, do.

We will focus on one particular algorithm, the Support Vector Machine (SVM) , which
is one of the most popular algorithms in modern machine learning. It was introduced by
Vapnik in 1992 and has taken off radically since then, principally because it often (but not
always) provides very impressive classification performance on reasonably sized datasets.
SVMs do not work well on extremely large datasets, since (as we shall see) the computations
don’t scale well with the number of training examples, and so become computationally very
expensive. This should be sufficient motivation to master the (quite complex) concepts that
are needed to understand the algorithm.

We will develop a simple SVM in this chapter, using cvxopt, a freely available solver
with a Python interface, to do the heavy work. There are several different implementations
of the SVM available on the Internet, and there are references to some of the more popular
ones at the end of the chapter. Some of them include wrappers so that they can be used
from within Python.

There is rather more to the SVM than the kernel method; the algorithm also reformulates
the classification problem in such a way that we can tell a good classifier from a bad one,
even if they both give the same results on a particular dataset. It is this distinction that
enables the SVM algorithm to be derived, so that is where we will start.

169

170 � Machine Learning: An Algorithmic Perspective

FIGURE 8.1 Three different classification lines. Is there any reason why one is better than
the others?

8.1 OPTIMAL SEPARATION
Figure 8.1 shows a simple classification problem with three different possible linear classifi-
cation lines. All three of the lines that are drawn separate out the two classes, so in some
sense they are ‘correct’, and the Perceptron would stop its training if it reached any one
of them. However, if you had to pick one of the lines to act as the classifier for a set of
test data, I’m guessing that most of you would pick the line shown in the middle picture.
It’s probably hard to describe exactly why you would do this, but somehow we prefer a
line that runs through the middle of the separation between the datapoints from the two
classes, staying approximately equidistant from the data in both classes. Of course, if you
were feeling smart, then you might have asked what criteria you were meant to pick a line
based on, and why one of the lines should be any better than the others.

To answer that, we are going to try to define why the line that runs halfway between
the two sets of datapoints is better, and then work out some way to quantify that so we
can identify the ‘optimal’ line, that is, the best line according to our criteria. The data that
we have used to identify the classification line is our training data. We believe that these
data are indicative of some underlying process that we are trying to learn, and that the
testing data that the algorithm will be evaluated on after training comes from the same
underlying process. However, we don’t expect to see exactly the same datapoints in the test
dataset, and inevitably some of the points will be closer to the classifier line, and some will
be further away. If we pick the lines shown in the left or right graphs of Figure 8.1, then
there is a chance that a datapoint from one class will be on the wrong side of the line, just
because we have put the line tight up against some of the datapoints we have seen in the
training set. The line in the middle picture doesn’t have this problem; like the baby bear’s
porridge in Goldilocks, it is ‘just right’.

8.1.1 The Margin and Support Vectors
How can we quantify this? We can measure the distance that we have to travel away from
the line (in a direction perpendicular to the line) before we hit a datapoint. Imagine that
we put a ‘no-man’s land’ around the line (shown in Figure 8.2), so that any point that
lies within that region is declared to be too close to the line to be accurately classified.
This region is symmetric about the line, so that it forms a cylinder about the line in 3D,
and a hyper-cylinder in higher dimensions. How large could we make the radius of this
cylinder until we started to put points into a no-man’s land, where we don’t know which
class they are from? This largest radius is known as the margin, labelled M . The margin
was mentioned briefly in Section 3.4.1, where it affected the speed at which the Perceptron
converged. The classifier in the middle of Figure 8.1 has the largest margin of the three. It

Support Vector Machines � 171

FIGURE 8.2 The margin is the largest region we can put that separates the classes without
there being any points inside, where the box is made from two lines that are parallel to
the decision boundary.

has the imaginative name of the maximum margin (linear) classifier. The datapoints in each
class that lie closest to the classification line have a name as well. They are called support
vectors. Using the argument that the best classifier is the one that goes through the middle
of no-man’s land, we can now make two arguments: first that the margin should be as large
as possible, and second that the support vectors are the most useful datapoints because
they are the ones that we might get wrong. This leads to an interesting feature of these
algorithms: after training we can throw away all of the data except for the support vectors,
and use them for classification, which is a useful saving in data storage.

Now that we’ve got a measurement that we can use to find the optimal decision boundary,
we just need to work out how to actually compute it from a given set of datapoints. Let’s
start by reminding ourselves of some of the things that we worked out in Chapter 3. We
have a weight vector (a vector, not a matrix, since there is only one output) and an input
vector x. The output we used in Chapter 3 was y = w · x+ b, with b being the contribution
from the bias weight. We use the classifier line by saying that any x value that gives a
positive value for w · x + b is above the line, and so is an example of the ‘+’ class, while
any x that gives a negative value is in the ‘◦’ class. In our new version of this we want to
include our no-man’s land. So instead of just looking at whether the value of w · x + b is
positive or negative, we also check whether the absolute value is less than our margin M ,
which would put it inside the grey box in Figure 8.2. Remember that w · x is the inner or
scalar product, w · x =

∑
i wixi. This can also be written as wT x, since this simply means

that we treat the vectors as degenerate matrices and use the normal matrix multiplication
rules. This notation will turn out to be simpler, and so will be used from here on.

172 � Machine Learning: An Algorithmic Perspective

For a given margin value M we can say that any point x where wT x + b ≥ M is a
plus, and any point where wT x + b ≤ −M is a circle. The actual separating hyperplane is
specified by wT x + b = 0. Now suppose that we pick a point x+ that lies on the ‘+’ class
boundary line, so that wT x+ = M . This is a support vector. If we want to find the closest
point that lies on the boundary line for the ‘◦’ class, then we travel perpendicular to the ‘+’
boundary line until we hit the ‘◦’ boundary line. The point that we hit is the closest point,
and we’ll call it x−. How far did we have to travel in this direction? Figure 8.2 hopefully
makes it clear that the distance we travelled is M to get to the separating hyperplane, and
then M from there to the opposing support vector. We can use this fact to write down
the margin size M in terms of w if we remember one extra thing from Chapter 3, namely
that the weight vector w is perpendicular to the classifier line. If it is perpendicular to the
classifier line, then it is obviously perpendicular to the ‘+’ and ‘◦’ boundary lines too, so
the direction we travelled from x+ to x− is along w. Now we need to make w a unit vector
w/‖w‖, and so we see that the margin is 1/‖w‖. In some texts the margin is actually written
as the total distance between the support vectors, so that it would be twice the one that
we have computed.

So now, given a classifier line (that is, the vector w and scalar b that define the line
wT x + b) we can compute the margin M . We can also check that it puts all of the points
on the right side of the classification line. Of course, that isn’t actually what we want to do:
we want to find the w and b that give us the biggest possible value of M . Our knowledge
that the width of the margin is 1/‖w‖ tells us that making M as large as possible is the
same as making wT w as small as possible. If that was the only constraint, then we could
just set w = 0, and the problem would be solved, but we also want the classification line
to separate out the ‘+’ data from the ‘◦’, that is, actually act as a classifier. So we are
going to need to try to satisfy two problems simultaneously: find a decision boundary that
classifies well, while also making wT w as small as possible. Mathematically, we can write
these requirements as: minimise 1

2 wT w (where the half is there for convenience as in so
many other cases) subject to some constraint that says that the data are well matched. The
next thing is to work out what these constraints are.

8.1.2 A Constrained Optimisation Problem
How do we decide whether or not a classifier is any good? Obviously, the fewer mistakes that
it makes, the better. So we can write down a set of constraints that say that the classifier
should get the answer right. To do this we make the target answers for our two classes be
±1, rather than 0 and 1. We can then write down ti × yi, that is, the target multiplied by
the output, and this will be positive if the two are the same and negative otherwise. We
can write down the equation of the straight line again, which is how we computed y, to see
that we require that ti(wT x + b) ≥ 1. This means that the constraints just need to check
each datapoint for this condition. So the full problem that we wish to solve is:

minimise
1
2

wT w subject to ti(wT xi + b) ≥ 1 for all i = 1, . . . n. (8.1)

We’ve put in a lot of effort to write down this equation, but we don’t know how to solve
it. We could try and use gradient descent, but we would have to put a lot of effort into
making it enforce the constraints, and it would be very, very slow and inefficient for the
problem. There is a method that is much better suited, which is quadratic programming,
which takes advantage of the fact that the problem we have described is quadratic and
therefore convex, and has linear constraints. A convex problem is one where if we take any
two points on the line and join them with a straight line, then every point on the line will

Support Vector Machines � 173

FIGURE 8.3 If the classifier makes some errors, then the distance by which the points
are over the border should be used to weight each error in order to decide how bad the
classifier is.

be above the curve. Figure 8.4 shows an example of a convex and a non-convex function.
Convex functions have a unique minimum, which is fairly easy to see in one dimension, and
remains true in any number of dimensions.

The practical upshot of these facts for us is that the types of problem that we are
interested in can be solved directly and efficiently (i.e., in polynomial time). There are very
effective quadratic programming solvers available, but it is not an algorithm that we will
consider writing ourselves. We will, however, work out how to formulate the problem so
that it can be presented to a quadratic program solver, and then use one of the programs
that other people have been nice enough to prepare and make freely available.

Since the problem is quadratic, there is a unique optimum. When we find that optimal
solution, the Karush–Kuhn–Tucker (KKT) conditions will be satisfied. These are (for all values
of i from 1 to n, and where the ∗ denotes the optimal value of each parameter):

λ∗
i (1 − ti(w∗T xi + b∗)) = 0 (8.2)

1 − ti(w∗T xi + b∗) ≤ 0 (8.3)
λ∗

i ≥ 0, (8.4)

where the λi are positive values known as Lagrange multipliers, which are a standard ap-
proach to solving equations with equality constraints.

The first of these conditions tells us that if λi �= 0 then (1− ti(w∗T xi + b∗)) = 0. This is
only true for the support vectors (the SVMs provide a sparse representation of the data), and
so we only have to consider them, and can ignore the rest. In the jargon, the support vectors

174 � Machine Learning: An Algorithmic Perspective

FIGURE 8.4 A function is convex if every straight line that links two points on the curve
does not intersect the curve anywhere else. The function on the left is convex, but the
one on the right is not, as the dashed line shows.

are those vectors in the active set of constraints. For the support vectors the constraints are
equalities instead of inequalities. We can therefore solve the Lagrangian function:

L(w, b, λ) =
1
2

wT w +
n∑

i=1
λi(1 − ti(wT xi + b)), (8.5)

We differentiate this function with respect to the elements of w and b:

∇wL = w −
n∑

i=1
λitixi, (8.6)

and

∂L
∂b

= −
n∑

i=1
λiti. (8.7)

If we set the derivatives to be equal to zero, so that we find the saddle points (maxima)
of the function, we see that:

w∗ =
n∑

i=1
λitixi,

n∑
i=1

λiti = 0. (8.8)

We can substitute these expressions at the optimal values of w and b into Equation (8.5)
and, after a little bit of rearranging, we get (where λ is the vector of the λi):

L(w∗, b∗, λ) =
n∑

i=1
λi −

n∑
i=1

λiti − 1
2

n∑
i=1

n∑
j=1

λiλjtitjxT
i xj , (8.9)

and we can notice that using the derivative with respect to b we can treat the middle term
as 0. This equation is known as the dual problem, and the aim is to maximise it with respect
to the λi variables. The constraints are that λi ≥ 0 for all i, and

∑n
i=1 λiti = 0.

Equation (8.8) gives us an expression for w∗, but we also want to know what b∗ is. We
know that for a support vector ti(wT xi + b) = 1, and we can substitute the expression for

Support Vector Machines � 175

w∗ into there and substitute in the (x, t) of one of the support vectors. However, in case
of errors this is not very stable, and so it is better to average it over the whole set of Ns

support vectors:

b∗ =
1

Ns

∑
support vectors j

(
tj −

n∑
i=1

λitixT
i xj

)
. (8.10)

We can also use Equation (8.8) to see how to make a prediction, since for a new point
z:

w∗T z + b∗ =

(
n∑

i=1
λitixi

)T

z + b∗. (8.11)

This means that to classify a new point, we just need to compute the inner product
between the new datapoint and the support vectors.

8.1.3 Slack Variables for Non-Linearly Separable Problems
Everything that we have done so far has assumed that the datatset is linearly separable.
We know that this is not always the case, but if we have a non-linearly separable dataset,
then we cannot satisfy the constraints for all of the datapoints. The solution is to introduce
some slack variables ηi ≥ 0 so that the constraints become ti(wT xi + b) ≥ 1− ηi. For inputs
that are correct, we set ηi = 0.

These slack variables are telling us that, when comparing classifiers, we should consider
the case where one classifier makes a mistake by putting a point just on the wrong side
of the line, and another puts the same point a long way onto the wrong side of the line.
The first classifier is better than the second, because the mistake was not as serious, so we
should include this information in our minimisation criterion. We can do this by modifying
the problem. In fact, we have to do major surgery, since we want to add a term into the
minimisation problem so that we will now minimise wT w + C× (distance of misclassified
points from the correct boundary line). Here, C is a tradeoff parameter that decides how
much weight to put onto each of the two criteria: small C means we prize a large margin
over a few errors, while large C means the opposite. This transforms the problem into
a soft-margin classifier, since we are allowing for a few mistakes. Writing this in a more
mathematical way, the function that we want to minimise is:

L(w, ε) = wT w + C

n∑
i=1

εi. (8.12)

The derivation of the dual problem that we worked out earlier still holds, except that
0 ≤ λi ≤ C, and the support vectors are now those vectors with λi > 0. The KKT conditions
are slightly different, too:

λ∗
i (1 − ti(w∗T xi + b∗) − ηi) = 0 (8.13)

(C − λ∗
i)ηi = 0 (8.14)

n∑
i=1

λ∗
i ti = 0. (8.15)

The second condition tells us that, if λi < C, then ηi = 0, which means that these are

176 � Machine Learning: An Algorithmic Perspective

FIGURE 8.5 By modifying the features we hope to find spaces where the data are linearly
separable.

the support vectors. If λi = C, then the first condition tells us that if ηi > 1 then the
classifier made a mistake. The problem with this is that it is not as clear how to choose a
limited set of vectors, and so most of our training set will be support vectors.

We have now built an optimal linear classifier. However, since most problems are non-
linear we seem to have done a lot of work for a case that we could already solve, albeit not
as effectively. So while the decision boundary that is found could be better than that found
by the Perceptron, if there is not a straight line solution, then the method doesn’t work
much better than the Perceptron. Not ideal for something that’s taken lots of effort to work
out! It’s time to pull our extra piece of magic out of the hat: transformation of the data.

8.2 KERNELS
To see the idea, have a look at Figure 8.5. Basically, we see that if we modify the features
in some way, then we might be able to linearly separate the data, as we did for the XOR
problem in Section 3.4.3; if we can use more dimensions, then we might be able to find a
linear decision boundary that separates the classes. So all that we need to do is work out
what extra dimensions we can use. We can’t invent new data, so the new features will have
to be derived from the current ones in some way. Just like in Section 5.3, we are going to
introduce new functions φ(x) of our input features.

The important thing is that we are just transforming the data, so that we are making
some function φ(xi) from input xi. The reason why this matters is that we want to be able
to use the SVM algorithm that we worked out above, particularly Equation (8.11). The
good news is that it isn’t any worse, since we can replace xi by φ(xi) (and z by φ(z)) and
get a prediction quite easily:

wT x + b =

(
n∑

i=1
λitiφ(xi)

)T

φ(z) + b. (8.16)

We still need to pick what functions to use, of course. If we knew something about
the data, then we might be able to identify functions that would be a good idea, but
this kind of domain knowledge is not always going to be around, and we would like to
automate the algorithm. For now, let’s think about a basis that consists of the polynomials
of everything up to degree 2. It contains the constant value 1, each of the individual (scalar)

Support Vector Machines � 177

FIGURE 8.6 Using x2
1 as well as x1 allows these two classes to be separated.

input elements x1, x2, . . . , xd, and then the squares of each input element x2
1, x2

2, . . . , x2
d, and

finally, the products of each pair of elements x1x2, x1x3, . . . , xd−1xd. The total input vector
made up of all these things is generally written as Φ(x); it contains about d2/2 elements.
The right of Figure 8.6 shows a 2D version of this (with the constant term suppressed), and
I’m going to write it out for the case d = 3, with a set of

√
2s in there (the reasons for them

will become clear soon):

Φ(x) = (1,
√
2x1,

√
2x2,

√
2x3, x2

1, x2
2, x2

3,
√
2x1x2,

√
2x1x3,

√
2x2x3). (8.17)

If there was just one feature, x1, then we would have changed this from a one-dimensional
problem into a three-dimensional one (1, x1, x2

1).
The only thing that this has cost us is computational time: the function Φ(xi) has d2/2

elements, and we need to multiply it with another one the same size, and we need to do this
many times. This is rather computationally expensive, and if we need to use the powers of
the input vector greater than 2 it will be even worse. There is one last piece of trickery that
will get us out of this hole: it turns out that we don’t actually have to compute Φ(xi)TΦ(xj).
To see how this works, let’s work out what Φ(x)TΦ(y) actually is for the example above
(where d = 3 to match perfectly):

Φ(x)TΦ(y) = 1 + 2
d∑

i=1
xiyi +

d∑
i=1

x2
i y2

i + 2
d∑

i,j=1;i<j

xixjyiyj . (8.18)

You might not recognise that you can factorise this equation, but fortunately somebody
did: it can be written as (1+xT y)2. The dot product here is in the original space, so it only
requires d multiplications, which is obviously much better—this part of the algorithm has
now been reduced from O(d2) to O(d). The same thing holds true for the polynomials of
any degree s that we are making here, where the cost of the naïve algorithm is O(ds). The
important thing is that we remove the problem of computing the dot products of all the
extended basis vectors, which is expensive, with the computation of a kernel matrix (also
known as the Gram matrix) K that is made from the dot product of the original vectors,
which is only linear in cost. This is sometimes known as the kernel trick. It means that
you don’t even have to know what Φ(·) is, provided you know a kernel. These kernels are
the fundamental reason why these methods work, and the reason why we went to all that
effort to produce the dual formulation of the problem. They produce a transformation of
the data so that they are in a higher-dimensional space, but because the datapoints only

178 � Machine Learning: An Algorithmic Perspective

appear inside those inner products, we don’t actually have to do any computations in those
higher-dimensional spaces, only in the original (relatively cheap) low-dimensional space.

8.2.1 Choosing Kernels
So how do we go about finding a suitable kernel? Any symmetric function that is positive
definite (meaning that it enforces positivity on the integral of arbitrary functions) can be
used as a kernel. This is a result of Mercer’s theorem, which also says that it is possible to
convolve kernels together and the result will be another kernel. However, there are three
different types of basis functions that are commonly used, and they have nice kernels that
correspond to them:

• polynomials up to some degree s in the elements xk of the input vector (e.g., x3
3 or

x1 × x4) with kernel:
K(x, y) = (1 + xT y)s (8.19)

For s = 1 this gives a linear kernel

• sigmoid functions of the xks with parameters κ and δ, and kernel:

K(x, y) = tanh(κxT y − δ) (8.20)

• radial basis function expansions of the xks with parameter σ and kernel:

K(x, y) = exp
(−(x − y)2/2σ2)

(8.21)

Choosing which kernel to use and the parameters in these kernels is a tricky problem.
While there is some theory based on something known as the Vapnik–Chernik dimension that
can be applied, most people just experiment with different values and find one that works,
using a validation set as we did for the MLP in Chapter 4.

There are two things that we still need to worry about for the algorithm. One is some-
thing that we’ve discussed in the context of other machine learning algorithms: overfitting,
and the other is how we will do testing. The second one is probably worth a little explaining.
We used the kernel trick in order to reduce the computations for the training set. We still
need to work out how to do the same thing for the testing set, since otherwise we’ll be stuck
with doing the O(ds) computations. In fact, it isn’t too hard to get around this problem,
because the forward computation for the weights is wTΦ(x), where:

w =
∑

i where λi>0
λitiΦ(xi). (8.22)

So we still have the computation of Φ(xi)TΦ(xj), which we can replace using the kernel as
before.

The overfitting problem goes away because of the fact that we are still optimising wT w
(remember that from somewhere a long way back?), which tries to keep w small, which
means that many of the parameters are kept close to 0.

Support Vector Machines � 179

8.2.2 Example: XOR
We motivated the SVM by thinking about how we solved the XOR function in Section 3.4.3.
So will the SVM actually solve the problem? We’ll need to modify the problem to have
targets -1 and 1 rather than 0 and 1, but that is not difficult. Then we’ll introduce a basis
of all terms up to quadratic in our two features: 1,

√
2x1,

√
2x2, x1x2, x2

1, x2
2, where the

√
2

is to keep the multiplications simple. Then Equation (8.9) looks like:

4∑
i=1

λi −
4∑

i,j

λiλjtitjΦ(xi)TΦ(xj), (8.23)

subject to the constraints that λ1 − λ2 + λ3 − λ4 = 0, λi ≥ 0 i = 1 . . . 4. Solving this (which
can be done algebraically) tells us that the classifier line is at x1x2 = 0. The margin that
corresponds to this is

√
2. Unfortunately we can’t plot it, since our four points have been

transferred into a six-dimensional space. We know that this is not the smallest number that
it can be solved in, since we did it in three dimensions in Section 3.4.3, but the dimensionality
of the kernel space doesn’t matter, as all the computations are in the 2D space anyway.

8.3 THE SUPPORT VECTOR MACHINE ALGORITHM
Quadratic programming solvers tend to be very complex (lots of the work is in identifying
the active set), and we would be a long way off topic if we tried to write one. Fortunately,
general purpose solvers have been written, and so we can take advantage of this. We will
use cvxopt, which is a convex optimisation package that includes a wrapper for Python.
There is a link to the relevant website on the book webpage. Cvxopt has a nice and clean
interface so we can use this to do the computational heavy lifting for an implementation of
the SVM. In essence, the approach is fairly simple: we choose a kernel and then for given
data, assemble the relevant quadratic problem and its constraints as matrices, and then
pass them to the solver, which finds the decision boundary and necessary support vectors
for us. These are then used to build a classifier for that training data. This is given as an
algorithm next, and then some parts of the implementation are highlighted, particularly
those parts where some speed-up can be achieved by some linear algebra.

The Support Vector Machine Algorithm

• Initialisation

– for the specified kernel, and kernel parameters, compute the kernel of distances
between the datapoints
∗ the main work here is the computation K = XXT

∗ for the linear kernel, return K, for the polynomial of degree d return 1
σ Kd

∗ for the RBF kernel, compute K = exp(−(x − x′)2/2σ2)

• Training

– assemble the constraint set as matrices to solve:

min
x

1
2

xT titjKx + qT x subject to Gx ≤ h, Ax = b

– pass these matrices to the solver

180 � Machine Learning: An Algorithmic Perspective

– identify the support vectors as those that are within some specified distance of
the closest point and dispose of the rest of the training data

– compute b∗ using equation (8.10)

• Classification

– for the given test data z, use the support vectors to classify the data for the
relevant kernel using:
∗ compute the inner product of the test data and the support vectors
∗ perform the classification as

∑n
i=1 λitiK(xi, z)+b∗, returning either the label

(hard classification) or the value (soft classification)

8.3.1 Implementation
In order to use the code on the website it is necessary to install the cvxopt package on your
computer. There is a link to this on the website. However, we need to work out exactly what
we are trying to solve. The key is Equation (8.9), which shows the dual problem, which had
constraints λi ≥ 0 and

∑n
i=1 λiti = 0. We need to modify it so that we are dealing with

the case for slack variables, and using a kernel. Introducing slack variables changes this
surprisingly little, basically swapping the first constraint to be 0 ≤ λi ≤ C, while adding
the kernel simply turns xT

i xj into K(xi, xj). So we want to solve:

maxλ =
n∑

i=1
λi − 1

2
λT λttT K(xi, xj)λ, (8.24)

subject to 0 ≤ λi ≤ C,

n∑
i=1

λiti = 0. (8.25)

The cvxopt quadratic program solver is cvxopt.solvers.qp(). This method takes the
following inputs cvxopt.solvers.qp(P, q, G, h, A, b) and then solves:

min
1
2

xT Px + qT x subject to Gx ≤ h, Ax = b, (8.26)

where x is the variable we are solving for, which is λ for us. Note that this solves minimisa-
tion problems, whereas we are doing maximisation, which means that we need to multiply
the objective function by -1. To make the equations match we set P = titjK and q is just
a column vector containing −1s. The second constraint is easy, since if A = λ then we get
the right equation. However, for the first constraint we need to do a little bit more work,
since we want to include two constraints (0 ≤ λi and λi ≤ C). To do this, we double up
on the number of constraints, multiplying the ones where we want ≥ instead of ≤ by -1.
In order to do this multiplication efficiently, it will also be better to use a matrix with the
elements on the diagonal, so that we make the following matrix:

Support Vector Machines � 181

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 0 . . . 0
0 t2 . . . 0

. . .
0 0 . . . tn

−t1 0 . . . 0
0 −t2 . . . 0

. . .
0 0 . . . −tn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

λ1
λ2
. . .
λn

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C
C
. . .
C
0
0

. . .
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.27)

Assembling these, turning them into the matrices expected by the solver, and then
calling it can then be written as:

Assemble the matrices for the constraints
P = targets*targets.transpose()*self.K
q = -np.ones((self.N,1))
if self.C is None:

G = -np.eye(self.N)
h = np.zeros((self.N,1))

else:
G = np.concatenate((np.eye(self.N),-np.eye(self.N)))
h = np.concatenate((self.C*np.ones((self.N,1)),np.zeros((self.N,1))))

A = targets.reshape(1,self.N)
b = 0.0

Call the quadratic solver
sol = cvxopt.solvers.qp(cvxopt.matrix(P),cvxopt.matrix(q),cvxopt.matrix(G),�
cvxopt.matrix(h), cvxopt.matrix(A), cvxopt.matrix(b))

There are a couple of novelties in the implementation. One is that the training method
actually returns a function that performs the classification, as can be seen here for the
polynomial kernel:

if self.kernel == ’poly’:
def classifier(Y,soft=False):

K = (1. + 1./self.sigma*np.dot(Y,self.X.T))**self.degree

self.y = np.zeros((np.shape(Y)[0],1))
for j in range(np.shape(Y)[0]):

for i in range(self.nsupport):
self.y[j] += self.lambdas[i]*self.targets[i]*K[j,i]

self.y[j] += self.b

if soft:
return self.y

else:
return np.sign(self.y)

182 � Machine Learning: An Algorithmic Perspective

The reason for this is that the classification function has different forms for the different
kernels, and so we need to create this function based on the kernel that is specified. A handle
for the classifier is stored in the class, and the method can then be called as:

output = sv.classifier(Y,soft=False)

The other novelty is that some of the computation of the RBF kernel uses some linear
algebra to make the computation faster, since NumPy is better at dealing with matrix
manipulations than loops. The elements of the RBF kernel are Kij = 1

2σ exp(−‖xi − xj‖2).
We could go about forming this by using a pair of loops over i and j, but instead we can
use some algebra.

The linear kernel has computed Kij = xT
i xj , and the diagonal elements of this matrix

are ‖xi‖2. The trick is to see how to use only these elements to compute the ‖xi − xj‖2

part, and it just requires expanding out the quadratic:

(xi − xj)2 = ‖xi‖2 + ‖x2
j ‖ − 2xT

i xj . (8.28)

The only work involved now is to make sure that the matrices are the right shape. This
would be easy if it wasn’t for the fact that NumPy ‘loses’ the dimension of some N × 1
matrices, so that they are of size N only, as we have seen before. This means that we need
to make a matrix of ones and use the transpose operator a few times, as can be seen in the
code fragment below.

self.xsquared = (np.diag(self.K)*np.ones((1,self.N))).T
b = np.ones((self.N,1))
self.K -= 0.5*(np.dot(self.xsquared,b.T) + np.dot(b,self.xsquared.T))
self.K = np.exp(self.K/(2.*self.sigma**2))

For the classifier we can use the same tricks to compute the product of the kernel and
the test data:

elif self.kernel == ’rbf’:
def classifier(Y,soft=False):

K = np.dot(Y,self.X.T)
c = (1./self.sigma * np.sum(Y**2,axis=1)*np.ones((1,np.shape(Y)[0])))�
.T
c = np.dot(c,np.ones((1,np.shape(K)[1])))
aa = np.dot(self.xsquared[self.sv],np.ones((1,np.shape(K)[0]))).T
K = K - 0.5*c - 0.5*aa
K = np.exp(K/(2.*self.sigma**2))

self.y = np.zeros((np.shape(Y)[0],1))
for j in range(np.shape(Y)[0]):

for i in range(self.nsupport):
self.y[j] += self.lambdas[i]*self.targets[i]*K[j,i]

Support Vector Machines � 183

FIGURE 8.7 The SVM learning about a linearly separable dataset (top row) and a dataset
that needs two straight lines to separate in 2D (bottom row) with left the linear kernel,
middle the polynomial kernel of degree 3, and right the RBF kernel. C = 0.1 in all cases.

self.y[j] += self.b

if soft:
return self.y

else:
return np.sign(self.y)

The first bit of computational work is in computing the kernel (which is O(m2n), where
m is the number of datapoints and n is the dimensionality), and the second part is inside
the solver, which has to factorise a sum of the kernel matrix and a test matrix at each
iteration. Factorisation costs O(m3) in general, and this is why the SVM is very expensive
to use for large datasets. There are some methods by which this can be improved, and there
are some references to this at the end of the chapter.

8.3.2 Examples
In order to see the SVM working, and to identify the differences between the kernels, we
will start with some very simple 2D datasets with two classes.

The first example (shown on the top row of Figure 8.7) simply checks that the SVM can
learn accurately about data that is linearly separable, which it does successfully. Note that
the different kernels produce different decision boundaries, which are not straight lines in
the 2D plot for the polynomial kernel (centre) and RBF kernel (right), and that different
numbers of support vectors (highlighted in bold) are needed for the different kernels as well.

On the second line of the figure is a dataset that cannot be separated by a single straight
line, and which the linear kernel cannot then separate. However, the polynomial and RBF
kernels deal with this data successfully with very few support vectors.

184 � Machine Learning: An Algorithmic Perspective

For the second example the data come from the XOR dataset with some spread around
each of the four datapoints. The dataset is made by making four sets of random Gaus-
sian samples with a small standard deviation, and means of (0, 0), (0, 1), (1, 0), and (1, 1).
Figure 8.8 shows a series of outputs from this dataset with the standard deviations of each
cluster being 0.1 on the left, 0.3 in the middle, and 0.4 on the right, and with 100 datapoints
for training, and 100 datapoints for testing. The training set for the two classes is shown as
black and white circles, with the support vectors marked with a thicker outline. The test
set are shown as black and white squares.

The top row of the figure shows the polynomial kernel of degree 3 with no slack variables,
while the second row shows the same kernel but with C = 0.1; the third row shows the RBF
kernel with no slack variables, and the last row shows the RBF kernel with C = 0.1. It can
be seen that where the classes start to overlap, the inclusion of slack variables leads to far
simpler decision boundaries and a better model of the underlying data. Both the polynomial
and RBF kernels perform well on this problem.

8.4 EXTENSIONS TO THE SVM
8.4.1 Multi-Class Classification
We’ve talked about SVMs in terms of two-class classification. You might be wondering how
to use them for more classes, since we can’t use the same methods as we have done to work
out the current algorithm. In fact, you can’t actually do it in a consistent way. The SVM
only works for two classes. This might seem like a major problem, but with a little thought
it is possible to find ways around the problem. For the problem of N -class classification,
you train an SVM that learns to classify class one from all other classes, then another that
classifies class two from all the others. So for N -classes, we have N SVMs. This still leaves
one problem: how do we decide which of these SVMs is the one that recognises the particular
input? The answer is just to choose the one that makes the strongest prediction, that is, the
one where the basis vector input point is the furthest into the positive class region. It might
not be clear how to work out which is the strongest prediction. The classifier examples in
the code snippets return either the class label (as the sign of y) or the value of y, and this
value of y is telling us how far away from the decision boundary it is, and clearly it will
be negative if it is a misclassification. We can therefore use the maximum value of this soft
boundary as the best classifier.

output = np.zeros((np.shape(test)[0],3))
output[:,0] = svm0.classifier(test[:,:2],soft=True).T
output[:,1] = svm1.classifier(test[:,:2],soft=True).T
output[:,2] = svm2.classifier(test[:,:2],soft=True).T

Make a decision about which class
Pick the one with the largest margin
bestclass = np.argmax(output,axis=1)
err = np.where(bestclass!=target)[0]
print len(err)/ np.shape(target)[0]

Figure 8.9 shows the first two dimensions of the iris dataset and the class decision
boundaries for the three classes. It can be seen that using only two dimensions does not

Support Vector Machines � 185

FIGURE 8.8 The effects of different kernels when learning a version of XOR with pro-
gressively more overlap (left to right) between the classes. Top row: polynomial kernel of
degree 3 with no slack variables, second row: polynomial of degree 3 with C = 0.1, third
row: RBF kernel, no slack variables, bottom row: RBF kernel with C = 0.1. The support
vectors are highlighted, and the decision boundary is drawn for each case.

186 � Machine Learning: An Algorithmic Perspective

FIGURE 8.9 A linear (left) and polynomial, degree 3 (right) kernel learning the first two
dimensions of the iris dataset, which separates one class very well from the other two,
but cannot distinguish between the other two (for good reason). The support vectors are
highlighted.

allow good separation of the data, and both kernels get about 33% accuracy, but allowing for
all four dimensions, both the RBF and polynomial kernels reliably get about 95% accuracy.

8.4.2 SVM Regression
Perhaps rather surprisingly, it is also possible to use the SVM for regression. The key is to
take the usual least-squares error function (with the regulariser that keeps the norm of the
weights small):

1
2

N∑
i=1

(ti − yi)2 +
1
2

λ‖w‖2, (8.29)

and transform it using what is known as an ε-insensitive error function (Eε) that gives 0 if
the difference between the target and output is less than ε (and subtracts ε in any other case
for consistency). The reason for this is that we still want a small number of support vectors,
so we are only interested in the points that are not well predicted. Figure 8.10 shows the
form of this error function, which is:

N∑
i=1

Eε(ti − yi) + λ
1
2

‖w‖2. (8.30)

You might see this written in other texts with the constant λ in front of the second
term replaced by a C in front of the first term. This is equivalent up to scaling. The picture
to think of now is almost the opposite of Figure 8.3: we want the predictions to be inside
the tube of radius ε that surrounds the correct line. To allow for errors, we again introduce
slack variables for each datapoint (εi for datapoint i) with their constraints and follow the
same procedure of introducing Lagrange multipliers, transferring to the dual problem, using
a kernel function and solving the problem with a quadratic solver.

The upshot of all this is that the prediction we make for test point z is:

f(z) =
n∑

i=1
(μi − λiK(xi, z) + b), (8.31)

Support Vector Machines � 187

FIGURE 8.10 The ε-insensitive error function is zero for any error below ε.

where μi and λi are two sets of constraint variables.

8.4.3 Other Advances
There is a lot of advanced work on kernel methods and SVMs. This includes lots of work
on the optimisation, including Sequential Minimal Optimisation, and extensions to compute
posterior probabilities instead of hard decisions, such as the Relevance Vector Machine. There
are some references in the Further Reading section.

There are several SVM implementations available via the Internet that are more ad-
vanced than the implementation on the book website. They are mostly written in C, but
some include wrappers to be called from other languages, including Python. An Internet
search will find you some possibilities to try, but some common choices are SVMLight,
LIBSVM, and scikit-learn.

FURTHER READING
The treatment of SVMs here has only skimmed the surface of the topic. There is a useful
tutorial paper on SVMs at:

• C.J. Burges. A tutorial on support vector machines for pattern recognition. Data
Mining and Knowledge Discovery, 2(2):121–167, 1998.

If you want more information, then any of the following books will provide it (the first
is by the creator of SVMs):

• V. Vapnik. The Nature of Statistical Learning Theory. Springer, Berlin, Germany,
1995.

• B. Schölkopf, C.J.C. Burges, and A.J. Smola. Advances in Kernel Methods: Support
Vector Learning. MIT Press, Cambridge, MA, USA, 1999.

188 � Machine Learning: An Algorithmic Perspective

• J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, Cambridge, UK, 2004.

If you want to know more about quadratic programming, then a good reference is:

• S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, UK, 2004.

Other machine learning books that give useful coverage of this area are:

• Chapter 12 of T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical
Learning, 2nd edition, Springer, Berlin, Germany, 2008.

• Chapter 7 of C.M. Bishop. Pattern Recognition and Machine Learning. Springer,
Berlin, Germany, 2006.

PRACTICE QUESTIONS
Problem 8.1 Suppose that the following are a set of points in two classes:

class 1 :
(

1
1

) (
1
2

) (
2
1

)
(8.32)

class 2 :
(

0
0

) (
1
0

) (
0
1

)
(8.33)

Plot them and find the optimal separating line. What are the support vectors, and
what is the margin?

Problem 8.2 Suppose that the points are now:

class 1 :
(

0
0

) (
1
2

) (
2
1

)
(8.34)

class 2 :
(

1
1

) (
1
0

) (
0
1

)
(8.35)

Try out the different basis functions that were given in the chapter to see which
separate this data and which do not.

Problem 8.3 Apply it to the wine dataset, trying out the different kernels. Compare the
results to using an MLP. Do the same for the yeast dataset.

Problem 8.4 Use an SVM on the MNIST dataset.

Problem 8.5 Verify that introducing the slack variables does not change the dual prob-
lem much at all (only changing the constraint to be 0 ≤ λi ≤ C). Start from Equa-
tion (8.12) and introduce the Lagrange multipliers and then compare the result to
Equations (8.9).

