
C H A P T E R 14

Unsupervised Learning

Many of the learning algorithms that we have seen to date have made use of a training
set that consists of a collection of labelled target data, or at least (for evolutionary and
reinforcement learning) some scoring system that identifies whether or not a prediction is
good or not. Targets are obviously useful, since they enable us to show the algorithm the
correct answer to possible inputs, but in many circumstances they are difficult to obtain—
they could, for instance, involve somebody labelling each instance by hand. In addition, it
doesn’t seem to be very biologically plausible: most of the time when we are learning, we
don’t get told exactly what the right answer should be. In this chapter we will consider
exactly the opposite case, where there is no information about the correct outputs available
at all, and the algorithm is left to spot some similarity between different inputs for itself.
Unsupervised learning is a conceptually different problem to supervised learning. Ob-

viously, we can’t hope to perform regression: we don’t know the outputs for any points,
so we can’t guess what the function is. Can we hope to do classification then? The aim of
classification is to identify similarities between inputs that belong to the same class. There
isn’t any information about the correct classes, but if the algorithm can exploit similarities
between inputs in order to cluster inputs that are similar together, this might perform clas-
sification automatically. So the aim of unsupervised learning is to find clusters of similar
inputs in the data without being explicitly told that these datapoints belong to one class
and those to a different class. Instead, the algorithm has to discover the similarities for
itself. We have already seen some unsupervised learning algorithms in Chapter 6, where the
focus was on dimensionality reduction, and hence clustering of similar datapoints together.
The supervised learning algorithms that we have discussed so far have aimed to minimise

some external error criterion—mostly the sum-of-squares error—based on the difference
between the targets and the outputs. Calculating and minimising this error was possible
because we had target data to calculate it from, which is not true for unsupervised learning.
This means that we need to find something else to drive the learning. The problem is more
general than sum-of-squares error: we can’t use any error criterion that relies on targets or
other outside information (an external error criterion), we need to find something internal
to the algorithm. This means that the measure has to be independent of the task, because
we can’t keep on changing the whole algorithm every time a new task is introduced. In
supervised learning the error criterion was task-specific, because it was based on the target
data that we provided.
To see how to work out a general error criterion that we can use, we need to go back to

some of the important concepts that were discussed in Section 2.1.1: input space and weight
space. If two inputs are close together then it means that their vectors are similar, and so
the distance between them is small (distance measures were discussed in Section 7.2.3, but

281

282 � Machine Learning: An Algorithmic Perspective

here we will stick to Euclidean distance). Then inputs that are close together are identified
as being similar, so that they can be clustered, while inputs that are far apart are not
clustered together. We can extend this to the nodes of a network by aligning weight space
with input space. Now if the weight values of a node are similar to the elements of an input
vector then that node should be a good match for the input, and any other inputs that
are similar. In order to start to see these ideas in practice we’ll look at a simple clustering
algorithm, the k-Means Algorithm, which has been around in statistics for a long time.

14.1 THE K-MEANS ALGORITHM
If you have ever watched a group of tourists with a couple of tour guides who hold umbrellas
up so that everybody can see them and follow them, then you have seen a dynamic version
of the k-means algorithm. Our version is simpler, because the data (playing the part of the
tourists) does not move, only the tour guides.
Suppose that we want to divide our input data into k categories, where we know the

value of k (for example, we have a set of medical test results from lots of people for three
diseases, and we want to see how well the tests identify the three diseases). We allocate
k cluster centres to our input space, and we would like to position these centres so that
there is one cluster centre in the middle of each cluster. However, we don’t know where the
clusters are, let alone where their ‘middle’ is, so we need an algorithm that will find them.
Learning algorithms generally try to minimise some sort of error, so we need to think of an
error criterion that describes this aim. The idea of the ‘middle’ is the first thing that we
need to think about. How do we define the middle of a set of points? There are actually
two things that we need to define:

A distance measure In order to talk about distances between points, we need some way
to measure distances. It is often the normal Euclidean distance, but there are other
alternatives; we’ve covered some other alternatives in Section 7.2.3.

The mean average Once we have a distance measure, we can compute the central point
of a set of datapoints, which is the mean average (if you aren’t convinced, think what
the mean of two numbers is, it is the point halfway along the line between them).
Actually, this is only true in Euclidean space, which is the one you are used to, where
everything is nice and flat. Everything becomes a lot trickier if we have to think about
curved spaces; when we have to worry about curvature, the Euclidean distance metric
isn’t the right one, and there are at least two different definitions of the mean. So we
aren’t going to worry about any of these things, and we’ll assume that space is flat.
This is what statisticians do all the time.

We can now think about a suitable way of positioning the cluster centres: we compute
the mean point of each cluster, μc(i), and put the cluster centre there. This is equivalent
to minimising the Euclidean distance (which is the sum-of-squares error again) from each
datapoint to its cluster centre.
How do we decide which points belong to which clusters? It is important to decide, since

we will use that to position the cluster centres. The obvious thing is to associate each point
with the cluster centre that it is closest too. This might change as the algorithm iterates,
but that’s fine.
We start by positioning the cluster centres randomly through the input space, since we

don’t know where to put them, and then we update their positions according to the data.
We decide which cluster each datapoint belongs to by computing the distance between each

Unsupervised Learning � 283

datapoint and all of the cluster centres, and assigning it to the cluster that is the closest.
Note that we can reduce the computational cost of this procedure by using the KD-Tree
algorithm that was described in Section 7.2.2. For all of the points that are assigned to
a cluster, we then compute the mean of them, and move the cluster centre to that place.
We iterate the algorithm until the cluster centres stop moving. Here is the algorithmic
description:

The k-Means Algorithm

• Initialisation

– choose a value for k

– choose k random positions in the input space
– assign the cluster centres μj to those positions

• Learning

– repeat
∗ for each datapoint xi:
· compute the distance to each cluster centre
· assign the datapoint to the nearest cluster centre with distance

di = min
j

d(xi, μj). (14.1)

∗ for each cluster centre:
· move the position of the centre to the mean of the points in that cluster
(Nj is the number of points in cluster j):

μj =
1

Nj

Nj∑

i=1
xi (14.2)

– until the cluster centres stop moving

• Usage

– for each test point:
∗ compute the distance to each cluster centre
∗ assign the datapoint to the nearest cluster centre with distance

di = min
j

d(xi, μj). (14.3)

The NumPy implementation follows these steps almost exactly, and we can take advan-
tage of the np.argmin() function, which returns the index of the minimum value, to find
the closest cluster. The code that computes the distances, finds the nearest cluster centre,
and updates them can then be written as:

284 � Machine Learning: An Algorithmic Perspective

FIGURE 14.1 Left: A two-dimensional dataset. Right: Three possible ways to position 4
centres (drawn as faces) using the k-means algorithm, which is clearly susceptible to local
minima.

Compute distances
distances = np.ones((1,self.nData))*np.sum((data-self.centres[0,:])**2,�
axis=1)
for j in range(self.k-1):

distances = np.append(distances,np.ones((1,self.nData))*np.sum((data-�
self.centres[j+1,:])**2,axis=1),axis=0)

Identify the closest cluster
cluster = distances.argmin(axis=0)
cluster = np.transpose(cluster*np.ones((1,self.nData)))

Update the cluster centres
for j in range(self.k):

thisCluster = np.where(cluster==j,1,0)
if sum(thisCluster)>0:

self.centres[j,:] = np.sum(data*thisCluster,axis=0)/np.sum(�
thisCluster)

To see how this works in practice, Figures 14.1 and 14.2 show some data and some
different ways to cluster that data computed by the k-means algorithm. It should be clear
that the algorithm is susceptible to local minima: depending upon where the centres are
initially positioned in the space, you can get very different solutions, and many of them look
very unlikely to our eyes. Figure 14.2 shows examples of what happens when you choose the
number of centres wrongly. There are certainly cases where we don’t know in advance how
many clusters we will see in the data, but the k-means algorithm doesn’t deal with this at
all well.
At the cost of significant extra computational expense, we can get around both of these

problems by running the algorithm many different times. To find a good local optimum (or
even the global one) we use many different initial centre locations, and the solution that
minimises the overall sum-of-squares error is likely to be the best one.
By running the algorithm with lots of different values of k, we can see which values give

us the best solution. Of course, we need to be careful with this. If we still just measure
the sum-of-squares error between each datapoint and its nearest cluster centre, then when

Unsupervised Learning � 285

FIGURE 14.2 Left: A solution with only 2 classes, which does not match the data well.
Right: A solution with 11 classes, showing severe overfitting.

we set k to be equal to the number of datapoints, we can position one centre on every
datapoint, and the sum-of-squares error will be zero (in fact, this won’t happen, since the
random initialisation will mean that several clusters will end up coinciding). However, there
is no generalisation in this solution: it is a case of serious overfitting. However, by computing
the error on a validation set and multiplying the error by k we can see something about the
benefit of adding each extra cluster centre.

14.1.1 Dealing with Noise
There are lots of reasons for performing clustering, but one of the more common ones is
to deal with noisy data readings. These might be slightly corrupted, or occasionally just
plain wrong. If we can choose the clusters correctly, then we have effectively removed the
noise, because we replace each noisy datapoint by the cluster centre (we will use this way
of representing datapoints for other purposes in Section 14.2). Unfortunately, the mean
average, which is central to the k-means algorithm, is very susceptible to outliers, i.e., very
noisy measurements. One way to avoid the problem is to replace the mean average with
the median, which is what is known as a robust statistic, meaning that it is not affected by
outliers (the mean of (1, 2, 1, 2, 100) is 21.2, while the median is 2). The only change that is
needed to the algorithm is to replace the computation of the mean with the computation
of the median. This is computationally more expensive, as we’ve discussed previously, but
it does remove noise effectively.

14.1.2 The k-Means Neural Network
The k-means algorithm clearly works, despite its problems with noise and the difficulty with
choosing the number of clusters. Interestingly, while it might seem a long way from neural
networks, it isn’t. If we think about the cluster centres that we optimise the positions of
as locations in weight space, then we could position neurons in those places and use neural
network training. The computation that happened in the k-means algorithm was that each
input decided which cluster centre it was closest to by calculating the distance to all of
the centres. We could do this inside a neural network, too: the location of each neuron is
its position in weight space, which matches the values of its weights. So for each input, we

286 � Machine Learning: An Algorithmic Perspective

FIGURE 14.3 A single-layer neural network can implement the k-means solution.

just make the activation of a node be the distance between that node in weight space and
the current input, as we did for Radial Basis Functions in Chapter 5. Then training is just
moving the position of the node, which means adjusting the weights.
So, we can implement the k-means algorithm using a set of neurons. We will use just

one layer of neurons, together with some input nodes, and no bias node. The first layer will
be the inputs, which don’t do any computation, as usual, and the second layer will be a
layer of competitive neurons, that is, neurons that ‘compete’ to fire, with only one of them
actually succeeding. Only one cluster centre can represent a particular input vector, and
so we will choose the neuron with the highest activation h to be the one that fires. This
is known as winner-takes-all activation, and it is an example of competitive learning, since
the set of neurons compete with each other to fire, with the winner being the one that best
matches (i.e., is closest to) the input. Competitive learning is sometimes said to lead to
grandmother cells, because each neuron in the network will learn to recognise one particular
feature, and will fire only when that input is seen. You would then have a specific neuron
that was trained to recognise your grandmother (and others for anybody else/anything else
that you see often).
We will choose k neurons (for hopefully obvious reasons) and fully connect the inputs

to the neurons, as usual. There is a picture of this network in Figure 14.3. We will use
neurons with a linear transfer function, computing the activation of the neurons as simply
the product of the weights and inputs:

hi =
∑

j

wijxj . (14.4)

Providing that the inputs are normalised so that their absolute size is the same (a point
that we’ll come back to in Section 14.1.3), this effectively measures the distance between
the input vector and the cluster centre represented by that neuron, with larger numbers
(higher activations) meaning that the two points are closer together.
So the winning neuron is the one that is closest to the current input. The question is

how can we then change the position of that neuron in weight space, that is, how do we
update its weights? In the k-means algorithm that was described earlier it was easy: we
just set the cluster centre to be the mean of all the datapoints that were assigned to that

Unsupervised Learning � 287

FIGURE 14.4 A set of neurons positioned on the unit sphere in 3D.

centre. However, when we do neural network training, we often feed in just one input vector
at a time and change the weights (that is, we use the algorithm on-line, rather than batch).
We therefore do not know the mean because we don’t know about all the datapoints, just
the current one. So we approximate it by moving the winning neuron closer to the current
input, making that centre even more likely to be the best match next time that input is
seen. This corresponds to:

Δwij = ηxj . (14.5)

However, this is not good enough. To see why not, let’s get back to that question of
normalisation. This is important enough to need its own subsection.

14.1.3 Normalisation
Suppose that the weights of all the neurons are small (maybe less than 1) except for those
to one particular neuron. We’ll make those weights be 10 for the example. If an input vector
with values (0.2, 0.2, −0.1) is presented, and it happens to be an exact match for one of the
neurons, then the activation of that neuron will be 0.2×0.2+0.2×0.2+−0.1×−0.1 = 0.09.
The other neurons are not perfect matches, so their activations should all be less. However,
consider the neuron with large weights. Its activation will be 10×0.2+10×0.2+10×−0.1 = 3,
and so it will be the winner. Thus, we can only compare activations if we know that the
weights for all of the neurons are the same size. We do this by insisting that the weight vector
is normalised so that the distance between the vector and the origin (the point (0, 0, . . . 0))
is one. This means that all of the neurons are positioned on the unit hypersphere, which we
described in Section 2.1.2 when we talked about the curse of dimensionality: it is the set of
all points that are distance one from the origin, so it is a circle in 2D, a sphere in 3D (as
shown in Figure 14.4), and a hypersphere in higher dimensions.
Computing this normalisation in NumPy takes a little bit of care because we are normal-

ising the total Euclidean distance from the origin, and the sum and division are row-wise
rather than column-wise, which means that the matrix has to be transposed before and
after the division:

288 � Machine Learning: An Algorithmic Perspective

normalisers = np.sqrt(np.sum(data**2,axis=1))*np.ones((1,shape(data)[0]))
data = np.transpose(np.transpose(data)/normalisers)

The neuronal activation (Equation (14.4)) can be written as:

hi =WT
i · x, (14.6)

where, as usual, · refers to the inner product or scalar product between the two vectors, and
WT

i is the transpose of the ith row of W . The inner product computes ‖Wi‖‖x‖ cos θ,
where θ is the angle between the two vectors and ‖ · ‖ is the magnitude of the vector. So
if the magnitude of all the vectors is one, then only the angle θ affects the size of the dot
product, and this tells us about the difference between the vector directions, since the more
they point in the same direction, the larger the activation will be.

14.1.4 A Better Weight Update Rule
The weight update rule given in Equation (14.5) lets the weights grow without any bound,
so that they do not lie on the unit hypersphere any more. If we normalise the inputs as
well, which certainly seems reasonable, then we can use the following weight update rule:

Δwij = η(xj − wij), (14.7)

which has the effect of moving the weight wij directly towards the current input. Remember
that the only weights that we are updating are those of the winning unit:

for i in range(self.nEpochs):
for j in range(self.nData):

activation = np.sum(self.weights*np.transpose(data[j:j+1,:]),axis=0)
winner = np.argmax(activation)
self.weights[:,winner] += self.eta * data[j,:] - self.weights[:,�
winner]

For many of our supervised learning algorithms we minimised the sum-of-squares differ-
ence between the output and the target. This was a global error criterion that affected all
of the weights together. Now we are minimising a function that is effectively independent
in each weight. So the minimisation that we are doing is actually more complicated, even
though it doesn’t look it. This makes it very difficult to analyse the behaviour of the al-
gorithm, which is a general problem for competitive learning algorithms. However, they do
tend to work well.
Now that we have a weight update rule that works, we can consider the entire algorithm

for the on-line k-means network:

Unsupervised Learning � 289

The On-Line k-Means Algorithm

• Initialisation

– choose a value for k, which corresponds to the number of output nodes
– initialise the weights to have small random values

• Learning

– normalise the data so that all the points lie on the unit sphere
– repeat:

∗ for each datapoint:
· compute the activations of all the nodes
· pick the winner as the node with the highest activation
· update the weights using Equation (14.7)

∗ until number of iterations is above a threshold

• Usage

– for each test point:
∗ compute the activations of all the nodes
∗ pick the winner as the node with the highest activation

14.1.5 Example: The Iris Dataset Again
Now that we have a method of training the k-means algorithm we can use it to learn about
data. Except we need to think about how to understand the results. If there aren’t any
labels in the data, then we can’t really do much to analyse the results, since we don’t have
anything to compare them with. However, we might use unsupervised learning methods
to cluster data where we know at least some of the labels. For example, we can use the
algorithm on the iris dataset that we looked at in Section 4.4.3, where we classified three
types of iris flowers using the MLP. All we need to do is to give some of the data to the
algorithm and train it, and then use some more to test the output. However, the output of
the algorithm isn’t as clear now, because we don’t use the labels that come with the data,
since we aren’t doing supervised learning anymore. To get around that, we need to work
out some way of turning the results from the algorithm, which is the index of the cluster
that best matches it, into a classification output that we can compare with the labels. This
is relatively easy if we used three clusters in the algorithm, since there should hopefully be
a one-to-one correspondence between them, but it might turn out that using more clusters
gets better results, although this will make the analysis more difficult. You can do this
by hand if there are relatively small numbers of datapoints, or you could use a supervised
learning algorithm to do it for you, as is discussed next.
To see how the k-means algorithm is used, we can see how it is used on the iris dataset:

290 � Machine Learning: An Algorithmic Perspective

import kmeansnet
net = kmeansnet.kmeans(3,train)
net.kmeanstrain(train)
cluster = net.kmeansfwd(test)
print cluster
print iris[3::4,4]

The output that is produced by this in an example run is (where the top line is the
output of the algorithm and the bottom line is the classes from the dataset):

[0. 0. 0. 0. 0. 1. 1. 1. 1. 2. 1. 2. 2. 2. 0. 1. 2. 1. 0.
1. 2. 2. 2. 1. 1. 2. 0. 0. 1. 0. 0. 0. 0. 2. 0. 2. 1.]

[1. 1. 1. 1. 1. 2. 2. 2. 1. 0. 2. 0. 0. 0. 1. 1. 0. 2. 2.
2. 0. 0. 0. 2. 2. 0. 1. 2. 1. 1. 1. 1. 1. 0. 1. 0. 2.]

and then we can see that cluster 0 corresponds to label 1 and cluster 1 to label 2, in which
case the algorithm gets 1 of cluster 0 wrong, 2 of cluster 1, and none of cluster 2.

14.1.6 Using Competitive Learning for Clustering
Deciding which cluster any datapoint belongs to is now an easy task: we present it to
the trained algorithm and look what is activated. If we don’t have any target data, then
the problem is finished. However, for many problems we might want to interpret the best-
matching cluster as a class label (alternatively, a set of cluster centres could all correspond
to one class). This is fine, since if we have target data we can match the output classes to
the targets, provided that we are a bit careful: there is no reason why the order of the nodes
in the network should match the order in the data, since the algorithm knows nothing about
that order. For that reason, when assigning class labels to the outputs, you need to check
which numbers match up carefully, or the results will look a lot worse than they actually
are.
There is an alternative solution to this problem of assigning labels, and it is one that

we have seen before. In Chapter 5 we considered using the k-means network in order to
train the positions of the RBF nodes. It is now possible to see how this works. The k-means
part positions the RBFs in the input space, so that they represent the input data well. A
Perceptron is then used on top of this in order to provide the match to the outputs in the
supervised learning part of the network. Since this is now supervised learning, it ensures
that the output categories match the target data classes. It also means that you can use
lots of clusters in the k-means network without having to work out which datapoints belong
to which cluster, since the Perceptron will do this for you.
We are now going to look at another major algorithm in competitive learning, the Self-

Organising Feature Map. As motivation for it, we are going to consider a sample problem for
competitive learning, which is a problem in data compression called vector quantisation.

Unsupervised Learning � 291

14.2 VECTOR QUANTISATION
We’ve already discussed using competitive learning for removing noise. There is a related
application, data compression, which is used both for storing data and for the transmission
of speech and image data. The reason that the applications are related is that both replace
the current input by the cluster centre that it belongs to. For noise reduction we do this to
replace the noisy input with a cleaner one, while for data compression we do it to reduce
the number of datapoints that we send.
Both of these things can be understood by considering them as examples of data com-

munication. Suppose that I want to send data to you, but that I have to pay for each data
bit I transmit, so I want to keep the amount of data that I send to a minimum. I notice
that there are lots of repeated datapoints, so I decide to encode my data before I send it, so
that instead of sending the entire set, we agree on a codebook of prototype vectors together.
Now, instead of transmitting the actual data, I can transmit the index of that datapoint
in the codebook, which is shorter. All you have to do is take the indices I send you and
look them up, and you have the data. We can actually make the code even more efficient
by using shorter indices for the datapoints that are more common. This is an important
problem in information theory, and every kind of sound and image compression algorithm
has a different method of solving it.
There is one problem with the scenario so far, which is that the codebook won’t contain

every possible datapoint. What happens when I want to send a datapoint and it isn’t in the
codebook? In that case we need to accept that our data will not look exactly the same, and
I send you the index of the prototype vector that is closest to it (this is known as vector
quantisation, and is the way that lossy compression works).
Figure 14.5 shows an interpretation of prototype vectors in two dimensions. The dots at

the centre of each cell are the prototype vectors, and any datapoint that lies within a cell
is represented by the dot. The name for each cell is the Voronoi set of a particular proto-
type. Together, they produce the Voronoi tesselation of the space. If you connect together
every pair of points that share an edge, as is shown by the dotted lines, then you get the
Delaunay triangulation, which is the optimal way to organise the space to perform function
approximation.
The question is how to choose the prototype vectors, and this is where competitive

learning comes in. We need to choose prototype vectors that are as close as possible to all of
the possible inputs that we might see. This application is called learning vector quantisation
because we are learning an efficient vector quantisation. The k-means algorithm can be used
to solve the problem if we know how large we want our codebook to be. However, another
algorithm turns out to be more useful, the Self-Organising Feature Map, which is described
next.

14.3 THE SELF-ORGANISING FEATURE MAP
By far the most commonly used competitive learning algorithm is the Self-Organising Feature
Map (often abbreviated to SOM), which was proposed by Teuvo Kohonen in 1988. Kohonen
was considering the question of how sensory signals get mapped into the cerebral cortex of
the brain with an order. For example, in the auditory cortex, which deals with the sounds
that we hear, neurons that are excited (i.e., that are caused to fire) by similar sounds are
positioned closely together, whereas two neurons that are excited by very different sounds
will be far apart.
There are two novel departures in this for us: firstly, the relative locations of the neu-

rons in the network matters (this property is known as feature mapping—nearby neurons

292 � Machine Learning: An Algorithmic Perspective

FIGURE 14.5 The Voronoi tesselation of space that performs vector quantisation. Any
datapoint is represented by the dot within its cell, which is the prototype vector.

correspond to similar input patterns), and secondly, the neurons are arranged in a grid with
connections between the neurons, rather than in layers with connections only between the
different layers. In the auditory cortex there appears to be sheets of neurons arranged in
2D, and that is the typical arrangement of neurons for the SOM: a grid of neurons arranged
in 2D, as can be seen in Figure 14.6. A 1D line of neurons is also sometimes used. In math-
ematical terms, the SOM demonstrates relative ordering preservation, which is sometimes
known as topology preservation. The relative ordering of the inputs should be preserved by
the ordering in the neurons, so that neurons that are close together represent inputs that
are close together, while neurons that are far apart represent inputs that are far apart.
This topology preservation is not necessarily possible, because the SOM typically uses a

1D or 2D array of neurons, and most of our input spaces are of much higher dimensionality
than that. This means that the ordering cannot be preserved. We have seen this in Figure 1.2,
where one view of some wind turbines made it look like they are on top of each other, when
they clearly are not, because we used a two-dimensional representation of three-dimensional
reality. You’ve probably seen the same thing in other photos, where trees appear to be
growing out of somebody’s head. A different way to see the same thing is given in Figure 14.7,
where mismatches between the topology of the input space and map lead to changes in the
relative ordering. The best that can be said is that SOM is perfectly topology-preserving,
which means that if the dimensionality of the input and the map correspond, then the
topology of the input space will be preserved. We are going to look at other methods of
performing dimensionality reduction in Chapter 6.
The question, then, is how we can implement feature mapping in an unsupervised learn-

ing algorithm. The first thing to recognise is that we need some interaction between the
neurons in the network, so that when one neuron fires, it affects what happens to those
around it. We have seen something like this before, for example, between different layers of
the MLP, but now we are thinking about neurons that are within a layer. These are known
as lateral connections (i.e., within the layer of the network). How should this interaction
work? We are trying to introduce feature mapping, so neurons that are close together in
the map should represent similar features. This means that the winning neuron should pull
other neurons that are close to it in the network closer to itself in weight space, which means
that we need positive connections. Likewise, neurons that are further away should represent
different features, and so should be a long way off in weight space, so the winning neuron
‘repels’ them, by using negative connections to push them away. Neurons that are very far
away in the network should already represent different features, so we just ignore them.

Unsupervised Learning � 293

FIGURE 14.6 The Self-Organising Map network. As usual, input nodes (on the left) do
no computation, and the weights are modified to change the activations of the neurons
(weights are only shown to two nodes for clarity). However, the nodes within the SOM
affect each other in that the winning node also changes the weights of neurons that are
close to it. Connections are shown in the figure to the eight closest nodes, but this is a
parameter of the network.

FIGURE 14.7 When inputs in 1D (a straight line), a 2D grid, and a 3D cube are represented
by a 2D grid of neurons, the relative ordering is not perfectly preserved. The 1D line is
bent, which means that points that used to be a long way apart (such as the first and
sixth on the line) are now close together, while the cube becomes very complicated. The
lines in the bottom part of the figure represent connections that are meant to be close.

294 � Machine Learning: An Algorithmic Perspective

FIGURE 14.8 Graph of the strength of lateral connections for a feature mapping algorithm
known as the ‘Mexican Hat’.

This is known as the ‘Mexican Hat’ form of lateral connections, for reasons that should be
clear from the picture in Figure 14.8. We can then just use ordinary competitive learning,
just like we did for the k-means network in Section 14.1.2. The Self-Organising Map does
pretty much exactly this.

14.3.1 The SOM Algorithm
Using the full Mexican hat lateral interactions between neurons is fine, but it isn’t essential.
In Kohonen’s SOM algorithm, the weight update rule is modified instead, so that informa-
tion about neighbouring neurons is included in the learning rule, which makes the algorithm
simpler. The algorithm is a competitive learning algorithm, so that one neuron is chosen as
the winner, but when its weights are updated, so are those of its neighbours, although to a
lesser extent. Neurons that are not within the neighbourhood are ignored, not repelled.
We will now look at the SOM algorithm before examining some of the details further.

The Self-Organising Feature Map Algorithm

• Initialisation

– choose a size (number of neurons) and number of dimensions d for the map
– either:

∗ choose random values for the weight vectors so that they are all different OR
∗ set the weight values to increase in the direction of the first d principal
components of the dataset

• Learning

– repeat:
∗ for each datapoint:
· select the best-matching neuron nb using the minimum Euclidean dis-
tance between the weights and the input,

nb = min
j

‖x − wT
j ‖. (14.8)

∗ update the weight vector of the best-matching node using:

wT
j ← wT

j + η(t)(x − wT
j), (14.9)

Unsupervised Learning � 295

where η(t) is the learning rate.
∗ update the weight vector of all other neurons using:

wT
j ← wT

j + ηn(t)h(nb, t)(x − wT
j), (14.10)

where ηn(t) is the learning rate for neighbourhood nodes, and h(nb, t) is the
neighbourhood function, which decides whether each neuron should be in-
cluded in the neighbourhood of the winning neuron (so h = 1 for neighbours
and h = 0 for non-neighbours)

∗ reduce the learning rates and adjust the neighbourhood function, typically
by η(t+1) = αη(t)k/kmax where 0 ≤ α ≤ 1 decides how fast the size decreases,
k is the number of iterations the algorithm has been running for, and kmax
is when you want the learning to stop. The same equation is used for both
learning rates (η, ηn) and the neighbourhood function h(nb, t).

– until the map stops changing or some maximum number of iterations is exceeded

• Usage

– for each test point:
∗ select the best-matching neuron nb using the minimum Euclidean distance
between the weights and the input:

nb = min
j

‖x − wT
j ‖ (14.11)

14.3.2 Neighbourhood Connections
The size of the neighbourhood is thus another parameter that we need to control. How
large should the neighbourhood of a neuron be? If we start our network off with random
weights, as we did for the MLP, then at the beginning of learning, the network is pretty well
unordered (as the weights are random, two nodes that are very close in weight space could be
on opposite sides of the map, and vice versa) and so it makes sense that the neighbourhoods
should be large, so that we get the rough ordering of the network correct. However, once
the network has been learning for a while, the rough ordering has already been created, and
the algorithm starts to fine-tune the individual local regions of the network. At this stage,
the neighbourhoods should be small, as is shown in Figure 14.9. It therefore makes sense to
reduce the size of the neighbourhood as the network adapts. These two phases of learning
are also known as ordering and convergence. Typically, we reduce the neighbourhood size
by a small amount at each iteration of the algorithm. We control the learning rate η in
exactly the same way, so that it starts off large and decreases over time, as is shown in the
algorithm below.
The fact that the size of the neighbourhood changes as the algorithm runs has conse-

quences for an implementation. There is no point using actual connections between nodes,
since the number of these will change as the algorithm runs. We therefore set up a matrix
that measures the distances between nodes in the network and choose the nodes in the
neighbourhood of a particular node as those within a neighbourhood radius that shrinks as
the algorithm runs.

296 � Machine Learning: An Algorithmic Perspective

FIGURE 14.9 Top: Initially, similar input vectors excite neurons that are far apart, so that
the neighbourhood (shown as a circle) needs to be large. Bottom: Later on during training
the neighbourhood can be smaller, because similar input vectors excite neurons that are
close together.

Unsupervised Learning � 297

Set up the map distance matrix
mapDist = np.zeros((self.x*self.y,self.x*self.y))
for i in range(self.x*self.y):

for j in range(i+1,self.x*self.y):
mapDist[i,j] = np.sqrt((self.map[0,i] - self.map[0,j])**2 + (self.�
map[1,i] - self.map[1,j])**2)

mapDist[j,i] = mapDist[i,j]

Within the loop, select the neighbours
Find the neighbours and update their weights
neighbours = np.where(mapDist[best[i]]<=self.nSize,1,0)
neighbours[best[i]] = 0
self.weights += self.eta_n * neighbours*np.transpose((inputs[i,:] - np.�
transpose(self.weights)))

There is another way to initialise the weights in the network, which is to use Principal
Components Analysis (which is described in Section 6.2) to find the two (assuming that
the map is two-dimensional) largest directions of variation in the data and to initialise the
weights so that they increase along these two directions:

dummy1,dummy2,evals,evecs = pca.pca(inputs,2)
self.weights = np.zeros((self.nDim,x*y))
for i in range(x*y):

for j in range(self.mapDim):
self.weights[:,i] += (self.map[j,i]-0.5)*2*evecs[:,j]

This means that the ordering part of the training has already been done in the initiali-
sation, and so the algorithm can be trained with small neighbourhood size from the start.
Obviously, this is only possible if the training of the algorithm is in batch mode, so that
you have all of the data available for training right from the start. This should be true for
the SOM anyway—it is not designed for on-line learning. This can be a bit of a limitation,
because there are many cases where we would like to do unsupervised on-line learning.
There are a couple of different things that we can do. One is to ignore that constraint

and use the SOM anyway. This is fairly common. However, the size of the map really starts
to matter, and there is no guarantee that the SOM will converge to a solution unless batch
learning is applied. The alternative is to use one of a variety of networks that are designed
to deal with exactly this situation. There are a fair number of these, but Fritzke’s “Growing
Neural Gas” and Marsland’s “Grow When Required” Network are two of the more common
ones.

14.3.3 Self-Organisation
You might be wondering what the self-organisation in the name of the SOM is. A particularly
interesting aspect of feature mapping is that we get a global ordering of the neurons in the
network, despite the fact that the interactions are all local, since neurons that are very far
apart do not interact with each other. We thus get a global ordering of the space using

298 � Machine Learning: An Algorithmic Perspective

only a set of local interactions, which is amazing. This is known as self-organisation, and
it appears everywhere. It is part of the growing science of complexity. To see how common
self-organisation is, consider a flock of birds flying in formation. The birds cannot possibly
know exactly where each other are, so how do they keep in formation? In fact, simulations
have shown that if each bird just tries to stay diagonally behind the bird to its right, and
fly at the same speed, then they form perfect flocks, no matter how they start off and what
objects are placed in their way. So the global ordering of the whole flock can arise from the
local interactions of each bird looking to the one on its right (or left).

14.3.4 Network Dimensionality and Boundary Conditions
We typically think about applying the SOM algorithm to a 2D rectangular array of neurons
(as shown in Figure 14.6), but there is nothing in the algorithm to force this. There are
cases where a line of neurons (1D) works better, or where three dimensions are needed. It
depends on the dimensionality of the inputs (actually on the intrinsic dimensionality, the
number of dimensions that you actually need to represent the data), not the number that
it is embedded in. As an example, consider a set of inputs spread through the room you are
in, but all on the plane that connects the bottom of the wall to your left with the top of the
wall to your right. These points have intrinsic dimensionality two since they are all on the
plane, but they are embedded in your three-dimensional room. Noise and other inaccuracies
in data often lead to it being represented in more dimensions than are actually required,
and so finding the intrinsic dimensionality can help to reduce the noise.
We also need to consider the boundaries of the network. In some cases, it makes sense

that the edges of the map of neurons is strictly defined — for example, if we are arranging
sounds from low pitch to high pitch, then the lowest and highest pitches we can hear are
obvious endpoints. However, it is not always the case that such boundaries are clearly
defined. In this case we might want to remove the boundary conditions. We can do this by
removing the boundary by tying the ends together. In 1D this means that we turn a line
into a circle, while in 2D we turn a rectangle into a torus. To see this, try taking a piece of
paper and bend it so that the top and bottom edges line up. You’ve now got a tube. If you
bend the tube round so that the two open ends meet up you have a circle of tube known
as a torus. Pictures of these effects are shown in Figure 14.10. In effect, it means that there
are no neurons on the edge of the feature map. The choice of the number of dimensions and
the boundary conditions depends on the problem that we are considering, but it is usually
the case that the torus works better than the rectangle, although it is not always clear why.
The one cost that this has is that the map distances get more complicated to calculate,

since we now need to calculate the distances allowing for the wrap around. This can be
done using modulo arithmetic, but it is easier to think about taking copies of the map and
putting them around the map, so that the original map has copies of itself all around: one
above, one below, to the right and left, and also diagonally above and below, as is shown in
Figure 14.11. Now we keep one of the points in the original map, and the distance to the
second node is the smallest of the distances between the first node and the copies of the
second node in the different maps (including the original). By treating the distances in x
and y separately, the number of distances that has to be computed can be reduced.
As with the competitive learning algorithm that we considered earlier, the size of the

SOM is defined before we start learning. The size of the network (that is, the number of
neurons that we put into it) decides how fine-grained the learning is. If there are very
few neurons, then the best that the network can do is to find gross generalisations that
link the data. However, if there are very large numbers of neurons, then the network can

Unsupervised Learning � 299

FIGURE 14.10 Using circular boundary conditions in 1D turns a line into a circle, while in
2D it turns a rectangle into a torus.

FIGURE 14.11 One way to compute distances between points without any boundary on
the map is to imagine copies of the entire map being placed around the original, and
picking the shortest of the distances between a node and any of the copies of the other
node.

300 � Machine Learning: An Algorithmic Perspective

represent every input without ever needing to generalise at all. This is yet another example
of overfitting. Clearly, then, choosing the correct size of network is important. The common
approach is to test out several different sizes of network, such as 5× 5 and 10× 10 and see
how well the network learns.

14.3.5 Examples of Using the SOM
As a first example of using the SOM, and one that shows the topological ordering of the
network, consider training the network on a set of two-dimensional data drawn at random
from a uniform distribution in [−1, 1] in both directions. If the network weights are started
off randomly, then initially the network is completely disordered (as shown in the top-
left picture in Figure 14.12), but after 10 iterations of training the network is ordered so
that neighbouring nodes map to data that is close together (bottom-left). Using PCA to
initialise the map is not especially useful for this dataset, but it does speed things up: only
five iterations through the dataset produce the output shown on the bottom-right of the
figure, where it started from the version on the top-right.
For two examples of using the SOM on non-random data, where we can expect to see

some actual learning, we will first look at the iris data that we used with the k-means
algorithm earlier in this chapter. Figure 14.13 shows a plot of which node of a 5 × 5 Self-
Organising Map was the best match on a set of test data after training for 100 iterations.
The three different classes are shown as different shapes (squares, plus triangles pointing
up and down), but remember that the network did not receive any information about these
target classes. It can be seen that the examples in each of the three classes form different
clusters in the map. Looking at the figure, you might be wondering if it is possible to use
the plot to identify the different classes by assuming that they are separated in the map.
This has been investigated—often by using methods similar to those of Linear Discriminant
Analysis that are described in Section 6.1—with some success, and a reference is provided
at the end of the chapter.
A more difficult problem is shown in Figure 14.14. The data are the ecoli dataset from

the UCI Machine Learning repository, and the class is the localisation site of the protein,
based on a set of protein measurements. The results with this dataset when testing are not
as clearly impressive (but note that the MLP gets about 50% accuracy on this dataset,
and that has the target data, which the SOM doesn’t). However, the clusters can still be
seen to some extent, and they are very clear in the training data. Note that the boundary
conditions can make things a little more complicated, since the cluster does not necessarily
respect the edges of the map.

FURTHER READING
There is a book by Kohonen, the inventor of the SOM, that provides a very good overview
(if rather dated, now) of the area:

• T. Kohonen. Self-Organisation and Associative Memory, 3rd edition, Springer, Berlin,
Germany, 1989.

The two on-line self-organising networks that were mentioned in the chapter were:

• B. Fritzke. A growing neural gas network learns topologies. In Gerald Tesauro,
David S. Touretzky, and Todd K. Leen, editors, Advances in Neural Information Pro-
cessing Systems, volume 7, MIT Press, Cambridge, MA, USA, 1995.

Unsupervised Learning � 301

FIGURE 14.12 Training the SOM on a set of uniformly randomly sampled two-dimensional
data in the range [−1, 1] in both dimensions. Top: Initialisation of the map using left:
random weights and right: PCA (the randomness in the data means that the directions
of variation are not necessarily along the obvious directions). Bottom: The output after
just 10 iterations of training on the left, and 5 on the right, both with typical parameter
values.

302 � Machine Learning: An Algorithmic Perspective

FIGURE 14.13 Plot showing which nodes are the best match according to class, with the
three shapes corresponding to three different classes in the iris dataset. The small dots
represent nodes that did not fire.

FIGURE 14.14 Plots showing which nodes are the best match according to class, with the
three shapes corresponding to three different classes in the E. coli dataset, tested on left:
the training set and right: a separate test set. The small dots represent nodes that did
not fire.

Unsupervised Learning � 303

• S. Marsland, J.S. Shapiro, and U. Nehmzow. A self-organising network that grows
when required. Neural Networks, 15(8-9):1041–1058, 2002.

A possible reference on processing the data in the map in order to identify clusters is:

• S. Wu and T.W.S. Chow. Self-organizing-map based clustering using a local clustering
validity index. Neural Processing Letters, 17(3):253–271, 2003.

Books that cover the area include:

• Section 10.14 of R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification, 2nd
edition, Wiley-Interscience, New York, USA, 2001.

• Chapter 9 of S. Haykin. Neural Networks: A Comprehensive Foundation, 2nd edition,
Prentice-Hall, New Jersey, USA, 1999.

• Section 9.3 of B.D. Ripley. Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, UK, 1996.

PRACTICE QUESTIONS
Problem 14.1 What is the purpose of the neighbourhood function in the SOM? How does

it change the learning?

Problem 14.2 A simplistic intruder detection system for a computer network consists of
an attempt to categorise users according to (i) the time of day they log in, (ii) the
length of time they log in for, (iii) the types of programs they run while logged in, (iv)
the number of programs they run while logged in. Suggest how you would train a SOM
and the naïve Bayes’ classifier to perform the categorisation. What preprocessing of
the data would you do, how much data would you need, and how large would you
make the SOM? Do you think that such a system would work for intruder detection?

Problem 14.3 The Music Genome Project (http://www.pandora.com) does not work by
using a SOM. But it could. Describe how you would implement it.

Problem 14.4 A bank wants to detect fraudulent credit card transactions. They have data
for lots and lots of transactions (each transaction is an amount of money, a shop, and
the time and date) and some information about when credit cards were stolen, and
the transactions that were performed on the stolen card. Describe how you could use
a competitive learning method to cluster people’s transactions together to identify
patterns, so that stolen cards can be detected as changes in pattern. How well do you
think this would work? There is much more data of transactions when cards are not
stolen, compared to stolen transactions. How does this affect the learning, and what
can you do about it?

Problem 14.5 It is possible to use any competitive learning method to position the basis
functions of a Radial Basis Function network. The example code used k-means. Modify
it to use the SOM instead and compare the results on the wine and yeast datasets.

Problem 14.6 For the wine dataset, experiment with different sizes of map, and boundary
conditions. How much difference does it make? Can you use the principal components
in order to set the size automatically?

