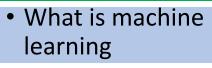
Machine Learning

Introduction

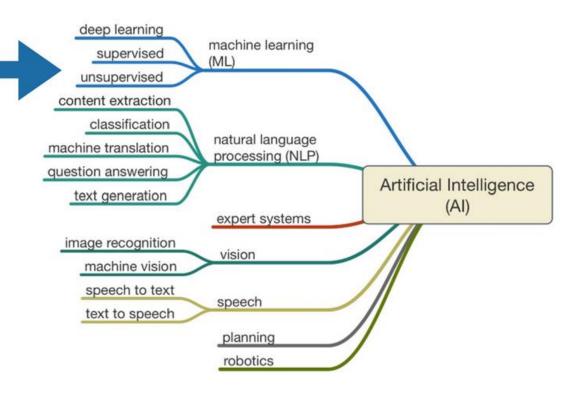
by Marina Barsky

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Machine learning teaches machines to learn to carry out tasks by themselves, without given explicit instructions



- Why ML
- Types of ML tasks
- Course requirements



- Machine learning is a subfield of artificial intelligence (AI) concerned with algorithms that allow computers to *learn*
- An algorithm is given a set of data and if data is non-random, it contains patterns
- Based on these patterns, ML algorithm builds a generalized model of data
- That allows it to make predictions about other data that it might see in the future

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

This is a lot of experience to learn from!

World Data Centre for Climate (WDCC)

220 terabytes of data on climate research and climatic trends,

110 terabytes worth of climate simulation data.

6 petabytes worth of additional information stored on tapes.

AT&T

323 terabytes of information 1.9 trillion phone call records

Google

91 million searches per day, After a year more than 33 trillion database entries.

ML algorithms incorporate mental models of learning

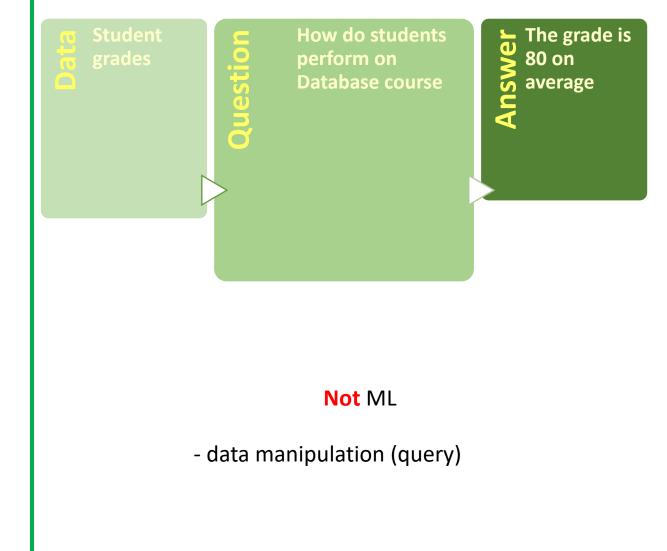
- What do we mean by learning?
 - Based on the previous experiences assign a label to a new object
 - Group similar things together into a single category
 - Identify repeating patterns

The ML algorithms use similar ideas:

- The previous experiences are encoded as a set of data points
- The inference of a label or a category is automatic

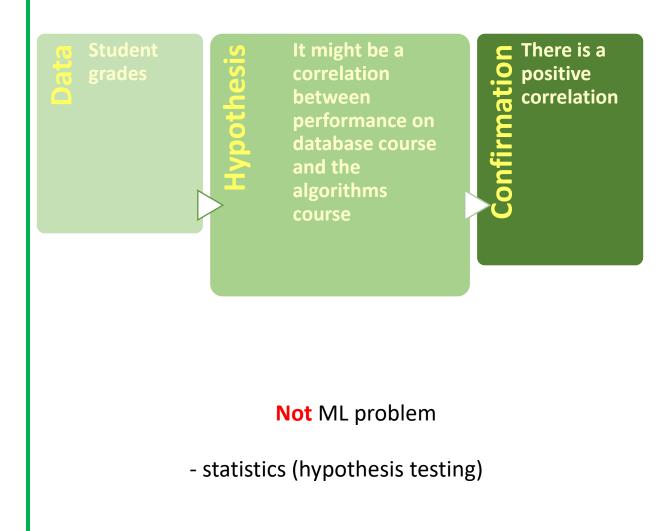
- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

What is (not) Machine Learning



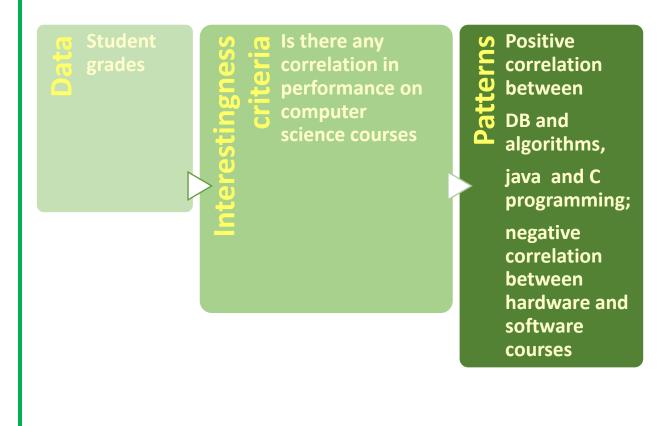
- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

What is (not) Machine Learning



- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

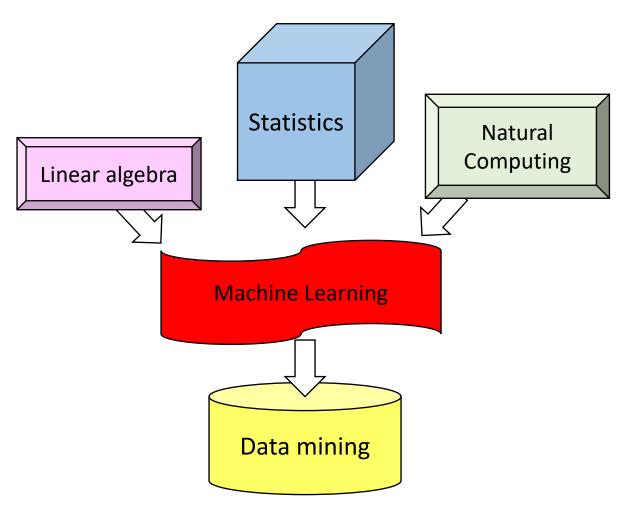
What is (not) Machine Learning



Machine learning!

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Not a separate discipline



Combines ideas from all these disciplines into practical *algorithms*

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Facial recognition? http://www.pictriev.com/

This course: Computer Science part of Machine Learning

- We focus on *algorithms*
- By the end you understand the ideas behind ML algorithms: both mental and mathematical
- You will experiment with programs based on these algorithms and see by yourselves whether machines can or cannot learn

Far-reaching Course Objectives

- Develop interest in math as a tool for learning about the world
- Learn how to handle ambiguity
- Formalize mental models of learning
- Incorporate ML algorithms in your smart web applications
- Invent new ML approaches and new algorithms

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Why study Machine Learning? 1/3

Get **competitive advantage** in business

- Google uses web links to rank pages, it gathers your every click and learns to adapt its search to your preferences
- Amazon and Netflix use information about the things people buy or watch to learn which people or items are similar to one another, and then make recommendations
- Pandora and Last.fm use your ratings of songs to create custom radio stations with music they think you will enjoy
- The predictions made by the Hollywood Stock Exchange are routinely better than those made by individual experts
- eHarmony uses information collected from participants to determine who would be a good match

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Why study Machine Learning? 2/3

In science:

• • •

- Classify faint galaxies
- Find similar gene expressions for different drug treatments
- Predict structure of a chemical from magnetic resonance data

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

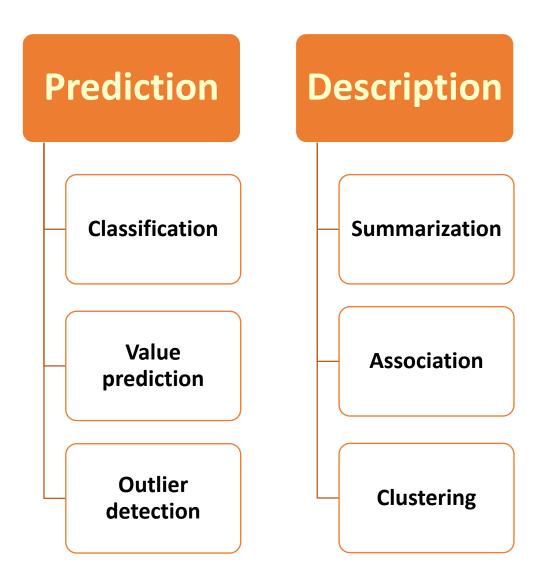
Why study Machine Learning? 3/3

Automate everyday tasks

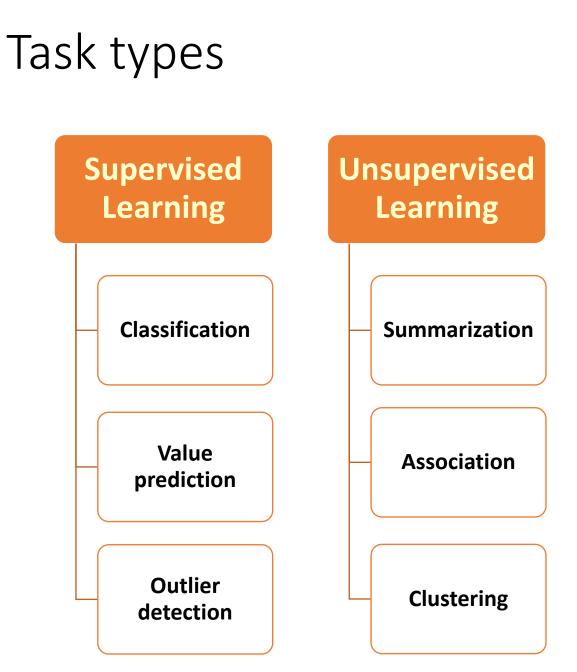
- Show to the algorithm which messages you consider a spam, and the task of separating spam can be carried out automatically
- Collect only positive or only negative news articles

Once you learn about a few machine-learning algorithms, you'll start seeing places to apply them just about everywhere

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements



- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements



- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Task of type 1: Classification

- Given a collection of records (*training set*)
 - Each record contains a set of *attributes*, one of the attributes is the *class*.
- Find ("learn") a *model* for the class attribute as a function of the values of the other attributes.
- Goal: **previously unseen** records should be assigned a class as accurately as possible.

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Classification example

							Otatus	meenie
Tid	Refund	Marital	Taxable		N	0	Single	75K
		Status	Income	Cheat	Y	es	Married	50K
	Yes	Single	125K	No	N	0	Married	150K
	No	Married	100K	No	Y	es	Divorced	90K
	No	Single	70K	No	N		Single	40K
	Yes	Married	120K	No	N	0	Married	80K
	No	Divorced	95K	Yes				N
5	No	Married	60K	No				
,	Yes	Divorced	220K	No				
	No	Single	85K	Yes				
)	No	Married	75K	No				
10	No	Single	90K	Yes			- 6	_
		\						lodel
					~~	K 10		
	[Training				rn		
		Set		Cla	SS	sifier		

Refund Marital

Status

Taxable

Income

Cheat

?

?

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Solving classification problem

My neighbour dataset

Тетр	Precip	Day	Shop	Clothes	
25	None	Sat	No	Casual	Walk
-5	Snow	Mon	Yes	Casual	Drive
15	Snow	Mon	Yes	Casual	Walk

(Adopted from Leslie Kaelbling's example in the MIT courseware)

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Classification problem

Тетр	Precip	Day	Shop	Clothes	
25	None	Sat	No	Casual	Walk
-5	Snow	Mon	Yes	Casual	Drive
15	Snow	Mon	Yes	Casual	Walk
-5	Snow	Mon	Yes	Casual	?

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Classification problem: memory

Тетр	Precip	Day	Shop	Clothes	
25	None	Sat	No	Casual	Walk
-5	Snow	Mon	Yes	Casual	Drive
15	Snow	Mon	Yes	Casual	Walk
-5	Snow	Mon	Yes	Casual	Drive

(Adapted from Leslie Kaelbling's example in the MIT courseware)

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Classification problem: noise

Temp	Precip	Day	Clothes	
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Drive
25	None	Sat	Casual	Drive
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	?

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Classification problem: averaging

Temp	Precip	Day	Clothes	
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Drive
25	None	Sat	Casual	Drive
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk
25	None	Sat	Casual	Walk

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Classification problem: generalization

Temp	Precip	Day	Clothes	
22	None	Fri	Casual	Walk
3	None	Sun	Casual	Walk
10	Rain	Wed	Casual	Walk
30	None	Mon	Casual	Drive
20	None	Sat	Formal	Drive
25	None	Sat	Casual	Drive
-5	Snow	Mon	Casual	Drive
27	None	Tue	Casual	Drive
24	Rain	Mon	Casual	?

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Learning to predict class label

Three different problems involved in learning:

memory

- averaging
- generalization.

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Type 2. Explorations

Tid	Refund	Marital Status	Taxable Income
1	Yes	Single	125K
2	No	Married	100K
3	No	Single	70K
4	Yes	Married	120K
5	No	Divorced	95K
6	No	Married	60K
7	Yes	Divorced	220K
8	No	Single	85K
9	No	Married	75K
10	No	Single	90K

Discover groups, no class labels

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Task of type 2. Associations

The Market-Basket Model

- A large set of *items*, e.g., things sold in a supermarket.
- A large set of *baskets*, each of which is a small set of the items, e.g., the things one customer buys in one transaction.

Fundamental problem

• What sets of items are often bought together?

Application

• If a large number of baskets contain both hot dogs and mustard, we can use this information. How?

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Solving association problem: market basket

	Transactions
1	{bread, milk, peanut butter}
2	{bread, milk}
3	{beer, potato chips}
4	{beer, diapers}
5	{beer, milk, diapers}
6	{bread, milk, yogurt}
7	{beer, bread, diapers}
8	{bread, milk, jelly}
9	{beer, cigarettes, diapers}
10	{bread, milk}

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Association problem

	Transactions
1	{ bread , milk, peanut butter}
2	{bread, milk}
3	{beer, potato chips}
4	{beer, diapers}
5	{beer, milk, diapers}
6	{ bread , milk, yogurt}
7	{beer, bread, diapers}
8	{bread, milk, jelly}
9	{beer, cigarettes, diapers}
10	{bread, milk}

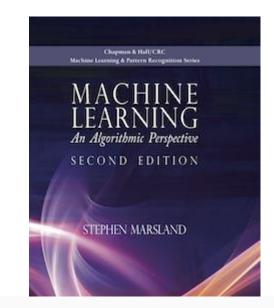
- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Beer and diapers?

	Transactions
1	{bread, milk, peanut butter}
2	{bread, milk}
3	{ beer , potato chips}
4	{beer, diapers}
5	{ beer , milk, diapers }
6	{bread, milk, yogurt}
7	{ beer , bread, diapers }
8	{bread, milk, jelly}
9	{beer, cigarettes, diapers}
10	{bread, milk}

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Amazon example



Customers who viewed Machine Learning: An Algorithmic Perspective (Chapman & Hall/Crc Machine... also viewed

Machine Learning: An Algorithmic Perspective, Second Edition ★★★★☆ 46 \$69.29 ✓prime 48 used and new from \$59.61

✓prime
85 used and
new from
\$22.86

Garefh Janues Garefh Janues Daniela Witten Tirvur Haste Robert Téchinani
An Introduction to Statistical Learning wth Applications in R
🕤 Springer

vprime
20 used and
new from
\$39.95

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Amazon example ?

Customers Who Bought This Item Also Bought

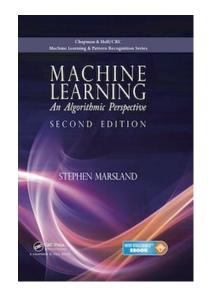
Revere Polished Aluminum 8-Inch Nonstick Skillet by Revere \$14.99

Pyrex Smart Essentials 8-Piece Mixing Bowl Set by Pyrex (66) \$26.82

Kodak Portra 400 Professional ISO 400, 35mm, 36 Exposures, Color...

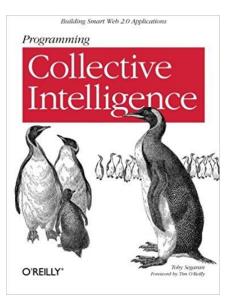
- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Books



Machine Learning: An Algorithmic Perspective by <u>Stephen Marsland</u>

Programming Collective Intelligence by <u>Toby Segaran</u>



- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

Types of assignments

- Toy problem solving at home every week. Required for the next class –absolutely no late submissions 10%
- Weekly labs real coding, real problems, smart applications that learn: 30%
- 2 midterm tests 20%
- Final project: open-ended: 40%

- What is machine learning
- Why ML
- Types of ML tasks
- Course requirements

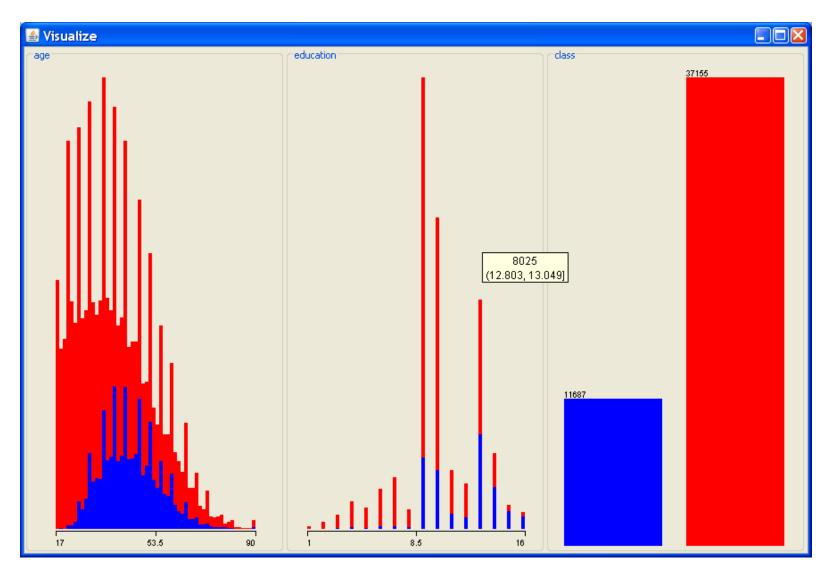
Labs: learning by doing

- Learning by example: on toy datasets which exhibit features of real-life datasets
- Python implementation of ML algorithms
- Real-life datasets analysis

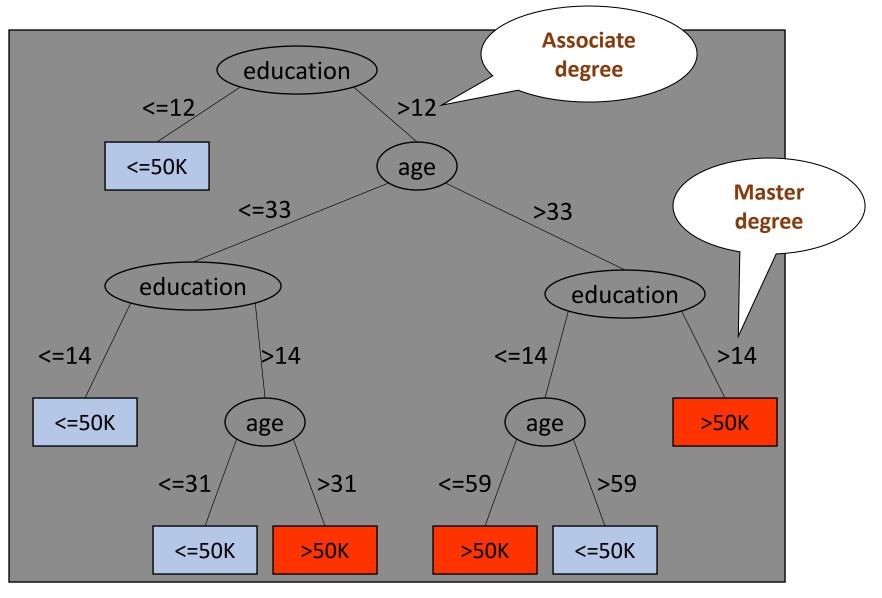
Lab example: what determines high salary Adult income dataset (US census 1994)

Age	Education	Mar. status	Occupation	Race	Sex	Born in	Yearly income
39	Bachelors	Never- married	Adm- clerical	White	М	US	<=50 K
50	Bachelors	Married-civ- spouse	Exec- managerial	White	М	US	<=50 K
54	7th-8th	Married-civ- spouse	Machine-op- inspct	White	М	US	>50K
37	Bachelors	Never- married	Exec- managerial	Black	М	US	>50K
28	Bachelors	Married-civ- spouse	Prof-specialty	Black	F	Cuba	<=50 K
37	Masters	Married-civ- spouse	Exec- managerial	White	F	US	<=50 K

Visualization of attributes: age and education



The results of learning: decision tree on age and education attributes



Course syllabus

I. Supervised learning

1. Decision trees.

Information theory, entropy, information gain, variance

2. Probabilistic classifiers: Naive Bayes and Bayesian Belief Networks.

Belief and probability, conditional prob

3. Evaluation of learning.

Confidence intervals, credibility, T-test

Signal theory: ROC curves

4. Instance-based learning: k-Nearest Neighbors.

Similarity and distance, scaling

- II. Unsupervised learning
 - 5. Associations and correlations. Correlation measures
 - 6. Clustering, fuzzy clustering. *Expectation maximization*
- III. Advanced Supervised learning
 - **7. Regression, logistic regression.** *Linear algebra, least squares*
 - 8. Separators: Support Vector Machines

Hyperplane geometry, perceptron

- 9. Artificial Neural Networks
- IV. Advanced topics
 - **10.** Dimensionality reduction.

Principal Component Analysis. Singular Value Decomposition.

- 11. Network learning: PageRank.
- 12. Genetic algorithm.