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Frequent itemsets can be very 
numerous

• We might choose to work with the top 
frequent itemsets



Frequent items in 5 Shakespeare 
sonnets

http://www.wordle.net/create

Tag (word) cloud – visualization of the most frequent words:

http://www.wordle.net/create


Frequent items in 5 Shakespeare 
sonnets

• http://www.tagcrowd.com/

http://www.tagcrowd.com/


Frequent items in papers on frequent 
pattern mining



Frequent items in papers on frequent 
pattern mining



Top-frequent itemsets

• Easy to compute

• Not interesting!

• We need to lower the min support threshold 
to find something non-trivial



Frequent Itemset Mining Implementations 
(FIMI) 2004 challenge

http://fimi.ua.ac.be/data/

• WebDocs dataset is about 5GB

• Each document – transaction, each word - item

• The challenge is to compute all frequent itemsets
(word combinations which frequently occur together)

• The number of distinct items (words) = 5,500,000 

• The number of transactions (documents) = 2,500,000 

• Max items per transaction = 281

http://fimi.ua.ac.be/data/


We can find the most frequent 
itemsets with support >= 10%

• These itemsets are trivial 
word combinations

• When we go to the lower 
support, the number of 
frequent itemsets becomes 
big

• How big? Very big: we 
cannot keep in memory all 
different 2-item 
combinations, to update 
their counters



How can we find new non-trivial 
knowledge

• Use confidence?

• The confidence is not-antimonotone, so the 
algorithm cannot prune any item combination 
and needs to compute confidence for each 
possible combination of items

• Computationally infeasible



Pitfalls of confidence

• Suppose we managed to rank all possible 
association rules by confidence

• How good are the top-confidence rules?



Evaluation of association between 
items: contingency table

• Given an itemset {X, Y}, the information about the relationship 
between X and Y can be obtained from a contingency table

Y Y 

X f11 f10 f1+

X f01 f00 f0+

f+1 f+0 |T|

Contingency table for {X ,Y}

f11: support count of X and Y
f10: support count of X and Y
f01: support count of X and Y
f00: support count of X and Y

Used to define various measures



Example: tea and coffee

Coffee Coffee

Tea 150 50 200

Tea 750 150 900

900 200 1100



Example: tea and coffee

• Confidence of rule T → C (conditional probability P(C|T)):

sup(T and C)/sup (T)=150/200=0.75

C C

T 150 50 200

T 750 150 900

900 200 1100

This is a top-confidence rule!



Example: tea and coffee

• Confidence of rule T → C

P(C|T)=0.75

However, P(C)=900/1100=0.85

C C

T 150 50 200

T 750 150 900

900 200 1100



Example: tea and coffee

• Confidence of rule T → C P(C|T)=0.75

However, P(C)=900/1100=0.85

Although confidence is high, the rule is misleading:

P(C| T)=750/900=0.83

The probability that the person drinks coffee is not increased 
due to the fact that he drinks tea: quite the opposite –
knowing that someone is a tea-lover decreases the probability 
that he is also a coffee-addict

C C

T 150 50 200

T 750 150 900

900 200 1100



Why did it happen?

• Confidence of rule T → C P(C|T)=0.75

Because the support counts are skewed: much 
more people drink coffee (900) than tea (200)

and confidence takes into account only one-
directional conditional probability

C C

T 150 50 200

T 750 150 900

900 200 1100



We want to evaluate mutual 
dependence (association, correlation)

• Not top-frequent

• Not top-confident

• Idea: apply statistical independence test



Statistical measure of association 
(correlation)-Lift

• If the appearance of T is statistically independent of appearance of C, then 
the probability to find them in the same trial (transaction) is P(C)xP(T)

• We expect to find both C and T with support P(C) x P(T) – expected 
support

• If actual support P(CT)

P(CT) = P(C)  P(T) => Statistical independence

P(CT) > P(C)  P(T) => Positive association

P(CT) < P(C)  P(T) => Negative association



Lift (Interest Factor)
• Measure that takes into account statistical dependence
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• Interest factor compares the frequency of a pattern against a 
baseline frequency computed under the statistical 
independence assumption. 

• The baseline frequency for a pair of mutually independent 
variables is: 
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Interest Equation

• Fraction f11/N is an estimate for the joint 
probability P(A,B), while f1+ /N and f+1 /N are the 
estimates for P(A) and P(B), respectively. 

• If A and B are statistically independent, then 
P(AB)=P(A)×P(B), thus the Interest is 1. 



Example: tea and coffee

Association Rule: Tea → Coffee

Interest = 150*1100 / (200*900)= 0.92 

(< 1, therefore they are negatively correlated – almost independent)

Coffee Coffee

Tea 150 50 200

Tea 750 150 900

900 200 1100



Problems with Lift

• Consider two contingency tables from the same dataset:

C C

M 10,000 1,000 11,000

M 1,000 88,000 89,000

11,000 89,000 100,000

Coffee (C) and milk (M)

P P

S 1,000 1,000 2,000

S 1,000 97,000 98,000

2,000 98,000 100,000

Popcorn (P) and soda (S)

Which items are more correlated: M and C or P and S?



Problems with Lift

C C

M 10,000 1,000 11,000

M 1,000 88,000 89,000

11,000 89,000 100,000

Coffee (C) and milk (M)

P P

S 1,000 1,000 2,000

S 1,000 97,000 98,000

2,000 98,000 100,000

Popcorn (P) and soda (S)

Well,
Lift (M,C) = 8.26
Lift (P,S)=25.00



Problems with Lift

C C

M 10,000 1,000 11,000

M 1,000 88,000 89,000

11,000 89,000 100,000

Coffee (C) and milk (M)

P P

S 1,000 1,000 2,000

S 1,000 97,000 98,000

2,000 98,000 100,000

Popcorn (P) and soda (S)

Lift (M,C) = 8.26
Lift (P,S)=25.00

Why did that happen? 
Because probabilities P(S)= P(P) =0.02 are very low comparing with probabilities 
P(C) = P(M)= 0.11

By multiplying very low probabilities, we get very-very low expected probability 
and then any number of items occurring together will be larger than expected



Problems with Lift

C C

M 10,000 1,000 11,000

M 1,000 88,000 89,000

11,000 89,000 100,000

Coffee (C) and milk (M)

P P

S 1,000 1,000 2,000

S 1,000 97,000 98,000

2,000 98,000 100,000

Popcorn (P) and soda (S)

Lift (M,C) = 8.26
Lift (P,S)=25.00

But most of the items in a large database have very low supports comparing with 
the total number of transactions

Conclusion: we are dealing with small probability events, where regular statistical 
methods might not be applicable



More problems with Lift: 
positive or negative?

C C

M 400 600 1,000

M 600 18,400 19,000

1,000 19,000 20,000

Dataset 1

C C

M 400 600 1,000

M 600 1,300 1,900

1,000 1,900 2,000

Dataset 2

According to definition of Lift:
DB1: expected (M and C)=1000/20000 x 1000/20000 =0.0025

actual (M and C)=400/20000 = 0.02
Lift = 8.0 (positive correlation)

DB2: expected (M and C)=1000/2000 x 1000/2000 =0.25
actual (M and C)=400/2000 = 0.2
Lift = 0.8 (negative correlation)

• Consider two contingency tables for C and M from 2 different datasets:

?



More problems with Lift: 
positive or negative?

C C

M 400 600 1,000

M 600 18,400 19,000

1,000 19,000 20,000

Dataset 1

C C

M 400 600 1,000

M 600 1,300 1,900

1,000 1,900 2,000

Dataset 2

But nothing has changed in connections between C and M

The changes are in the count of transactions which do not contain neither C nor 
M.

Such transactions are called null-transactions with respect to C and M

We want the measure which does not depend on null-transactions: null-
transaction invariant. Which depends only on counts of items in the current 
itemset



What are we looking for?

The area corresponds to support counts

or



Possible null-invariant measure 1: 
Jaccard index

Jaccard index: intersection/union

JI (A, B) = sup (A and B)/[sup(A)+sup(B)-sup(A and B)]



Possible null-invariant measure 2: 
Kulczynsky

Kulczynsky: arithmetic mean of conditional 
probabilities

Kulc (A, B) = [P(A|B)+P(B|A)]/2

In terms of support counts:

Kulc(A,B) = ½ [sup (A and B)/sup (A) + sup (A and B)/sup (B) ]



Possible null-invariant measure 3: 
Cosine

Cosine: geometric mean of conditional probabilities

Cos (A, B) = sqrt[P(A|B) x P(B|A)]

In terms of support counts:

Cos (A,B) = sup (A and B)/sqrt [sup (A) x sup (B)]



Kulc on the same dataset

• Consider two contingency tables from the same dataset:

C C

M 10,000 1,000 11,000

M 1,000 88,000 89,000

11,000 89,000 100,000

Coffee (C) and milk (M)

P P

S 1,000 1,000 2,000

S 1,000 97,000 98,000

2,000 98,000 100,000

Popcorn (P) and soda (S)

Which items are more correlated: M and C or P and S?



Kulc on the same dataset

C C

M 10,000 1,000 11,000

M 1,000 88,000 89,000

11,000 89,000 100,000

Coffee (C) and milk (M)

P P

S 1,000 1,000 2,000

S 1,000 97,000 98,000

2,000 98,000 100,000

Popcorn (P) and soda (S)

Kulc (C,M) = ½ *(10000/11000+10000/11000) =0.91

Kulc (P,S) = ½ *(1000/2000+1000/2000) = 0.5

Lift (M,C) = 8.26
Lift (P,S)=25.00



Kulc on two datasets: 
positive or negative?

C C

M 400 600 1,000

M 600 18,400 19,000

1,000 19,000 20,000

Dataset 1

C C

M 400 600 1,000

M 600 1,300 1,900

1,000 1,900 2,000

Dataset 2

DB1: Kulc (C,M) = ½ *(400/1000+400/1000) =0.4
DB2: Kulc (C,M) = ½ *(400/1000+400/1000) = 0.4

DB1: Lift = 8.0 (positive correlation)
DB2: Lift = 0.8 (negative correlation)



Problems begin
• We found decent null-invariant measures to evaluate 

the quality of associations (correlations) between 
items

• The problem: how do we extract top-ranked 
correlations from large transactional database?

• All null-invariant measures are non-antimonotone

• This is the area of current research



We were able to discover interesting 
strong correlations with low supports

*Efficient mining of top correlated patterns based on null-invariant measures by S. Kim et 
al., 2011



ASSOCIATIONS ACROSS CONCEPT 
HIERARCHIES



Items: levels of abstraction
Food

Bread

Milk

Skim 2%

Electronics

Computers Home

Desktop Laptop
Wheat White

Foremost Kemps

DVDTV

Printer Scanner

Accessory



How much to generalize?

• Should we consider correlation between milk and 
bread, between cream and bagels, or between 
specific labels of cream and bagels?

• The correlation between specific items can be hard 
to find because of the low support

• The correlation between more general itemsets can 
be very low, despite that the support is high 



Multi-level Association Rules
• Generate frequent patterns at highest level first. 

• Then, generate frequent patterns at the next highest level, and so on, 
decreasing minsupport threshold

• Issues:

– May miss some potentially interesting cross-level association patterns. 
E.g.

skim milk → white bread, 

2% milk → white bread,

skim milk → white bread
might not survive because of low support, but 

milk → white bread

could. 

However, we don’t generate a cross-level itemset such as 

{milk, white bread}



Customers also may have hierarchies

All

M F

College
High 

school
College

High 
school

Hierarchy of groups: strata



Example (symmetric binary variables)

• What’s the confidence of the following rules:

(rule 1) {HDTV=Yes} → {Exercise machine = Yes}

(rule 2) {HDTV=No} → {Exercise machine = Yes} ?

Confidence of rule 1 = 99/180 = 55%

Confidence of rule 2 = 54/120 = 45%

Conclusion: there is a positive correlation between 
buying HDTV and buying exercise machines



What if we look into more specific groups

• What’s the confidence of the rules for each strata:

(rule 1) {HDTV=Yes} → {Exercise machine = Yes}

(rule 2) {HDTV=No} → {Exercise machine = Yes}   ?

College students:

Confidence of rule 1 = 1/10 = 10%

Confidence of rule 2 = 4/34 = 11.8%

Working Adults:

Confidence of rule 1 = 98/170 = 57.7%

Confidence of rule 2 = 50/86 = 58.1%

The rules suggest that, 
for each group, 
customers who don’t 
buy HDTV are more 
likely to buy exercise 
machines, which 
contradict the previous 
conclusion when data 
from the two customer 
groups are pooled 
together.



Correlation is reversed 
at different levels of generalization

At a more general level of abstraction:

{HDTV=Yes} → {Exercise machine = Yes}

College students:

{HDTV=No} → {Exercise machine = Yes}

Working Adults:

{HDTV=No} → {Exercise machine = Yes}

This is called 
Simpson’s Paradox



Importance of Stratification
• The lesson here is that proper stratification is 

needed to avoid generating spurious patterns 
resulting from Simpson's paradox. 

For example

• Market basket data from a major supermarket 
chain should be stratified according to store 
locations, while 

• Medical records from various patients should be 
stratified  according to confounding factors such as 
age and gender.



Explanation of Simpson’s paradox

• Lisa and Bart are programmers, and they fix bugs for 
two weeks 

Week 1 Week 2 Both weeks

Lisa 60/100 1/10 61/110

Bart 9/10 30/100 39/110

Who is more productive: Lisa or Bart?



Explanation of Simpson’s paradox

Week 1 Week 2 Both weeks

Lisa 60/100 1/10 61/110

Bart 9/10 30/100 39/110

If we consider productivity for each week, we notice 
that the samples are of a very different size

The work should be judged from an equal sample 
size, which is achieved when the numbers of bugs 
each fixed are added together



Explanation of Simpson’s paradox

Week 1 Week 2 Both weeks

Lisa 60/100 1/10 61/110

Bart 9/10 30/100 39/110

Simple algebra of fractions shows that even though

a1/A > b1/B
c1/C > d1/D

(a1+c1)/(A+C) can be smaller than (b1+d1)/(B+D) !

This may happen when the sample sizes A, B, C, D are skewed
(Note, that we are not adding two inequalities, but adding the 
absolute numbers)



Simpson’s paradox in real life

• Two examples:

– Gender bias

– Medical treatment



Example 1: Berkeley gender bias case

Admitted Not 
admitted

Total

Men 3,714 4,727 8,441

Women 1,512 2,808 4,320

Admitted to graduate school at University of California, Berkeley (1973)

• What’s the confidence of the following rules:
(rule 1) {Man=Yes} → {Admitted= Yes}
(rule 2) {Man=No} → {Admitted= Yes} ?

Confidence of rule 1 = 3714/8441= 44%
Confidence of rule 2 = 1512/4320 = 35%

Conclusion: bias against women applicants



Example 1: Berkeley gender bias case

Men Women
Dept.Total Admitted Total Admitted

A 825 62% 108 82%

B 560 63% 25 68%

C 325 37% 593 34%

D 417 33% 375 35%

E 191 28% 393 24%

F 272 6% 341 7%

Stratified by the departments

In most departments, 
the bias is towards women!



Example 2: Kidney stone treatment
Success rates of 2 treatments for kidney stones

Treatments Success Not success Total

A* 273 77 350

B** 289 61 350

• What’s the confidence of the following rules:
(rule 1) {treatment=A} → {Success= Yes}
(rule 2) {treatment=B} → {Success = Yes} ?

(A) Confidence of rule 1 = 273/350= 78%
(B) Confidence of rule 2 = 289/350 = 83%

*Open procedures (surgery)
** Percutaneous nefrolithotomy (removal through a small opening) 

Conclusion: treatment B is better



Example 2: Kidney stone treatment
Success rates of 2 treatments for kidney stones

Treatment A Treatment B

Small stones 93% (81/87) 87%(234/270)

Large stones 73%(192/263) 69%(55/80)

Both 78%(273/350) 83% (289/350)

Treatment A is better for both small and large stones,
But treatment B is more effective if we add both groups together



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• Kidney stones: if you know the size of the stone, 
choose treatment A, if you don’t – treatment B? 



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• The common sense: the treatment which is preferred 
under both conditions should be preferred when the 
condition is unknown



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• If we always choose to use the stratified data, we can 
partition strata further, into groups by eye color, age, 
gender, race … These arbitrary hierarchies can 
produce opposite correlations, and lead to wrong 
choices



Implications in decision making

• Which data should we consult when choosing an 
action: the aggregated or stratified?

• Conclusion: data should be consulted with care and 
the understanding of the underlying story about the 
data is required for making correct decisions

From: Judea Pearl. Causality: Models, Reasoning, and Inference



NEGATIVE ASSOCIATIONS



Negative association rules

• The methods for association learning were based on 
the assumption that the presence of an item is more 
important than its absence (asymmetric binary 
attributes)

• The negative correlations can be useful: 

– To identify competing items: absence of Blu ray 
and DVD player in the same transaction

– To find rare important events: rare occurrence 
{Fire=yes, Alarm=On}



Mining negative patterns

• Negative itemset: a frequent itemset where at least 
one item is negated

• Negative association rule: an association rule 
between items in a negative itemset with confidence 
≥ minConf

• If a regular itemset is infrequent due to the low 
count of some item, it is frequent if we consider the 
negation (absence) of a corresponding item



Negative patterns = non-positive
null

AB AC AD AE BC BD BE CD CE DE

A B C D E

ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE

ABCD ABCE ABDE ACDE BCDE

ABCDE



Challenging task

• Positive associations can be extracted only for high-
levels of support. Then the set of all frequent 
itemsets is manageable

• In this case, the complement to all frequent itemsets
is exponentially large, and cannot be efficiently 
enumerated

• But do we need all negative associations?



Flipping patterns

• Flipping patterns are extracted from the datasets with 
concept hierarchies

• The pattern is interesting if it has positive correlation 
between items which is accompanied by the negative 
association of their minimal generalizations, and vice 
versa

• We call such patterns flipping patterns



Example from Groceries dataset

Beer

Canned 
beer

Cosmetics

Baby 
cosmetics

Drinks Non-food

A

Delicatessen

Salad dressing

Pork

Pork

Fresh produce Meat

B



Examples from Movie rating dataset

western

My darling 
Clementine (1946)

High noon 
(1952)

romance

The big 
country (1958)

A farewell to 
arms (1932)

all

Romance

The big 
country 
(1958)

Western

High 
noon 

(1952)



Examples from US census dataset

Prof: 
Craft-repair

Prof: 
Craft-repair

&
Edu: 

Bachelor

Income: 
≥50 K

Income: 
≥50 K

A

Age: 
60-65

Age: 
60-65

&
Prof: 

Executive

Income: 
≥50 K

Income: 
≥50 K

B



Examples from medical papers dataset

Mental 
disorders

Substance
-related 

Human 
activities

Temperance

Withdrawal 
syndrome

Temperance

A

Psych. 
phenomena

Psycho
-physiology

Behavioral 
disciplines

Psycho
-therapy

Biofeedback
Behavior 
therapy

B


