Naïve Bayes

Lecture 02.01

Statistics is a tool to aid and organize our reasoning and beliefs about the world

Today

- Belief and evidence
- Empirical reasoning: always probabilistic
- Inductive reasoning with probabilities
- Bayes method for updating beliefs
- Naïve Bayes classifier

Belief and evidence Inductive reasoning

- Critical thinking: always have good reasons for your beliefs
- Some reasons are 100% true
- Some only probable
- Inductive reasoning with probabilities: you always have a chance of being wrong

I believe that John will not be at the party

In the absence of facts

John will not be at the party

What are the odds?

I believe that John will not be at the party

Invalid reasoning

I do not like John

John will not be at the party

What are the odds?

I believe that John will not be at the party

Probabilistic reasoning: valid fact (evidence)

What are the odds given this fact?

I believe that John will not be at the party

More facts – update your beliefs

What are the odds?

Bayesian beliefs

- How do we judge that something is true?
- Can mathematics help make judgments more accurate?
- Bayes: our believes should be updated as new evidence becomes available

Г. Вацез. 1701 - 1761

Bayes' method for updating beliefs

- There are 2 events: A and not A (B) which you believe occur with probabilities P(A) and P(B). Estimation P(A):P(B) represents *odds* of A vs. B.
- Collect evidence data E.
- Re-estimate P(A|E):P(B|E) and update your beliefs.

Probabilities. Bayes theorem

Bayes theorem (formalized by Laplace)

A without evidence (*prior probability*)

Inverse probabilities are typically easier to ascertain

Bayes' method with probabilities

- There are 2 events: A and not A (B) which you believe occur with probabilities P(A) and P(B). Estimation P(A):P(B) represents odds of A vs. B.
- Collect evidence data E.
- Re-estimate P(A|E):P(B|E) and update your beliefs.

The updated odds are computed as:

$$\frac{P(A|E)}{P(B|E)} = \frac{P(E|A)P(A)/P(E)}{P(E|B)P(B)/P(E)}$$

Bayes' method with probabilities

- There are 2 events: A and not A (B) which you believe occur with probabilities P(A) and P(B). Estimation P(A):P(B) represents odds of A vs. B.
- Collect evidence data E.
- Re-estimate P(A|E):P(B|E) and update your beliefs.

or simply $\frac{P(A|E)}{P(B|E)} = \frac{P(E|A)P(A)}{P(E|B)P(B)}$

Explanation by example: hit-and-run (fictitious)

- Taxicab company has 75 blue cabs (B) and 15 green cabs (G)
- At night when there are no other cars on the street: hit-and-run episode

Question: what is more probable:
B or G

?

Adopted from: The numbers behind NUMB3RS: solving crime with mathematics by Devlin and Lorden.

What is more probable: B or G

P(B):P(G)=5:1

New evidence

- Witness: "I saw a green cab": E_G
- What is the probability that the witness really saw a green car?
- Witness is tested at night conditions: identifies correct color 4 times out of 5

• The eyewitness test shows:

 $P(E_G | G) = 4/5$ (correctly identified)

 $P(E_G | B) = 1/5$ (incorrectly identified)

Updating the odds

• In our case we want to compare:

the car was **G** given a witness testimony E_G : $P(G|E_G)$ vs.

the car was **B** given a witness testimony E_G : $P(B|E_G)$

Note: There is no way to know which of 2 was true, we just estimate

Back to hit-and-run

All cabs were on the streets:

Prior odds ratio: P(B) : P(G) = 5/1

Updated odds ratio: $\frac{P(B|E_G)}{P(G|E_G)} = \frac{P(B)*P(E_G|B)}{P(G)*P(E_G|G)}$

 $P(E_G | G) = 4/5$ (correctly identified) $P(E_G | B) = 1/5$ (incorrectly identified)

New odds

Still 5:4 odds that the car was B!

Hit-and-run: full calculation

P(B) = 5/6, P(G) = 1/6 $P(E_G | G) = 4/5 P(E_G | B) = 1/5$

- Probability that car was green given the evidence E_G : P(G|E_G)= P(G)* P(E_G|G) /P(E_G) = [1/6 * 4/5] / P(E_G) =4/30P(E_G) //- 4 parts of 30P(X_G)
- Probability that car was **blue** given the evidence X_G : $P(B|E_G) = P(B)*P(E_G|B)/P(E_G) = [5/6 * 1/5]/P(E_G) = 5/30P(E_G)$ //- 5 parts of $30P(X_G)$

P(H)=1/10 P(F)=1/40 P(H|F)=1/2

P(F|H) =?

P(H)=1/10 P(F)=1/40 P(H|F)=1/2

P(F|H) =P(H|F)P(F)/P(H) =1/2*1/40 *10=1/8

Someone draws an envelope at random and offers to sell it to you. How much should you pay? The probability to win is 1:1. Pay no more than 50c.

Variant: before deciding, you are allowed to see one bead drawn from the envelope. Suppose it's black: How much should you pay? Suppose it's red: How much should you pay?

Variant: before deciding, you are allowed to see one bead drawn from the envelope.

Suppose it's black: How much should you pay? P(W|b)=P(b|W)P(W)/P(b) = (1/2*1/2)/P(b)=1/4*1/P(b) P(L|b)=P(b|L)P(L)/P(b)=(2/3*1/2)/P(b) = 1/3*1/P(b)Probability to win is now 3:4 – pay not more than \$(3/7)

Suppose it's red: How much should you pay? – the same logic

When you want to

- <u>Determine the probability of having a medical</u> <u>condition after positive test results</u>
- Find out a probable outcome of political elections
- <u>Improve machine-learning performance</u>
- Even to <u>"prove"</u> and <u>"disprove"</u> the existence of God

Use Bayesian Reasoning

Mathematical predictions

- We can 'predict' where the spacecraft will be at noon in 2 months from now
- We cannot predict where you will be tomorrow at noon
- But, based on numerous observations (evidence), we can estimate the probability

Need for probabilistic learners

Given the evidence (data),
can we certainly derive
the diagnostic rule:

the diagnostic rule.

if Toothache=true then Cavity=true ?

- This rule isn't right always.
 - Not all patients with toothache have cavities some of them have gum disease, an abscess, etc.
- We could try an inverted rule:

if Cavity=true then Toothache=true

• But this rule isn't necessarily right either; not all cavities cause pain.

Name	Toothache	•••	Cavity
Smith	true	•	true
Mike	true	• •	true
Mary	false	•••	true
Quincy	true	•••	false
•••	•••	•••	

Historical data

Certainty and Probability

- The connection between toothaches and cavities is not a certain logical consequence in either direction.
- However, we can provide a **probability** that given an evidence (toothache) the patient has cavity.
- For this we need to know:
 - Prior probability of having cavity: how many times dentist patients had cavities: P(cavity)
 - The number of times that the evidence (toothache) was observed among all cavity patients: P(toothache|cavity)

Bayes' Rule for diagnostic probability

Bayes' rule:

P(A|B)=P(A)*P(B|A)/P(B)

Useful for assessing diagnostic probability from symptomatic probability as:

P(Cause | Symptom) = P(Symptom | Cause) P(Cause) / P(Symptom)

 Bayes's rule is useful in practice because there are many cases where we do have good probability estimates for these three numbers and need to compute the fourth