Naïve Bayes

Lecture 02.01

Statistics is a tool to aid and organize our reasoning and beliefs about the world

Today

- Belief and evidence
- Empirical reasoning: always probabilistic
- Inductive reasoning with probabilities
- Bayes method for updating beliefs
- Naïve Bayes classifier

Belief and evidence Inductive reasoning

- Critical thinking: always have good reasons for your beliefs
- Some reasons are 100% true
- Some only probable
- Inductive reasoning with probabilities: you always have a chance of being wrong

I believe that John will not be at the party

In the absence of facts

John will not be at the party

What are the odds?

I believe that John will not be at the party

Invalid reasoning

I do not like John

John will not be at the party

What are the odds?

I believe that John will not be at the party

Probabilistic reasoning: valid fact (evidence)

I do not like John
John is very shy

John will not be at the party

What are the odds given this fact?

I believe that John will not be at the party

More facts - update your beliefs

John will not be at the party

What are the odds?

Bayesian beliefs

- How do we judge that something is true?
- Can mathematics help make judgments more accurate?
- Bayes: our believes should be updated as new evidence becomes available

O. Bayes.

Bayes' method for updating beliefs

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data E.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.

Probabilities. Bayes theorem

Bayes theorem (formalized by Laplace)

$$
\begin{aligned}
& P(A \mid E)=P(A \cap E) / P(E) \\
& P(E \mid A)=P(A \cap E) / P(A)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Probability of } \\
\text { event } A \text { given } \\
\text { evidence }
\end{array} \\
& P\left(\begin{array}{c}
\text { Probability of } \\
\text { evidence given } \\
\text { event } A
\end{array}\right. \\
& P(A \mid E)=P(E \mid A) P(A) / P(E)
\end{aligned}
$$

Probability of event A without evidence (prior probability)

Bayes' method with probabilities

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data \mathbf{E}.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.

The updated odds are computed as:

$$
\frac{P(A \mid E)}{P(B \mid E)}=\frac{P(E \mid A) P(A) / P(E)}{P(E \mid B) P(B) / P(E)}
$$

Bayes' method with probabilities

- There are 2 events: A and not $A(B)$ which you believe occur with probabilities $P(A)$ and $P(B)$. Estimation $P(A): P(B)$ represents odds of A vs. B.
- Collect evidence data \mathbf{E}.
- Re-estimate $P(A \mid E): P(B \mid E)$ and update your beliefs.
or simply

$$
\frac{P(A \mid E)}{P(B \mid E)}=\frac{P(E \mid A) P(A)}{P(E \mid B) P(B)}
$$

Explanation by example: hit-and-run (fictitious)

- Taxicab company has 75 blue cabs (B) and 15 green cabs (G)
- At night when there are no other cars on the street: hit-and-run episode
- Question: what is more probable:
B or G

What is more probable: B or G

$$
P(B): P(G)=5: 1
$$

New evidence

- Witness: "I saw a green cab": E_{G}
- What is the probability that the witness really saw a green car?
- Witness is tested at night conditions: identifies correct color 4 times out of 5
- The eyewitness test shows:
$P\left(E_{G} \mid G\right)=4 / 5$ (correctly identified)
$P\left(E_{G} \mid B\right)=1 / 5$ (incorrectly identified)

Updating the odds

- In our case we want to compare:
the car was G given a witness testimony $E_{G}: P\left(G \mid E_{G}\right)$ VS.
the car was B given a witness testimony $E_{G}: P\left(B \mid E_{G}\right)$

Note: There is no way to know which of 2 was true, we just estimate

Back to hit-and-run

All cabs were on the streets:
Prior odds ratio: $P(B): P(G)=5 / 1$
Updated odds ratio: $\frac{P\left(B \mid E_{G} L\right.}{P\left(G \mid E_{G}\right)}=\frac{P(B) * P\left(E_{G} \mid B\right)}{P(G) * P\left(E_{G} \mid G\right)}$

$P\left(E_{G} \mid G\right)=4 / 5$ (correctly identified)
$P\left(E_{G} \mid B\right)=1 / 5$ (incorrectly identified)

New odds

$$
\frac{P\left(B \mid E_{G} L\right.}{P\left(G \mid E_{G}\right)}=\frac{P(B)^{*} P\left(E_{G} \mid B\right)}{P(G) * P\left(E_{G} \mid G\right)}
$$

Still 5:4 odds that the car was B!

Hit-and-run: full calculation

$$
\begin{aligned}
& P(B)=5 / 6, P(G)=1 / 6 \\
& P\left(E_{G} \mid G\right)=4 / 5 \quad P\left(E_{G} \mid B\right)=1 / 5
\end{aligned}
$$

- Probability that car was green given the evidence E_{G} :

$$
\begin{aligned}
& P\left(G \mid E_{G}\right)=P(G)^{*} P\left(E_{G} \mid G\right) / P\left(E_{G}\right)=[1 / 6 * 4 / 5] / P\left(E_{G}\right)=4 / 30 P\left(E_{G}\right) \\
& \quad / /-4 \text { parts of } 30 P\left(X_{G}\right)
\end{aligned}
$$

- Probability that car was blue given the evidence X_{G} :

$$
P\left(B \mid E_{G}\right)=P(B)^{*} P\left(E_{G} \mid B\right) / P\left(E_{G}\right)=[5 / 6 * 1 / 5] / P\left(E_{G}\right)=5 / 30 P\left(E_{G}\right)
$$

//- 5 parts of $30 \mathrm{P}\left(\mathrm{X}_{\mathrm{G}}\right)$

Bayes in 'real' life. Example 1

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=$?

Bayes in 'real' life. Example 1

$P(H)=1 / 10$
$P(F)=1 / 40$
$P(H \mid F)=1 / 2$
$P(F \mid H)=P(H \mid F) P(F) / P(H)$
$=1 / 2 * 1 / 40 * 10=1 / 8$

Bayes in 'real' life. Example 2

WIN envelope

LOSE envelope

Someone draws an envelope at random and offers to sell it to you. How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

Bayes in 'real' life. Example 2

WIN envelope

LOSE envelope

Variant: before deciding, you are allowed to see one bead drawn from the envelope. Suppose it's black: How much should you pay? Suppose it's red: How much should you pay?

Bayes in 'real' life. Example 2

WIN envelope

LOSE envelope

Variant: before deciding, you are allowed to see one bead drawn from the envelope.
Suppose it's black: How much should you pay?
$P(W \mid b)=P(b \mid W) P(W) / P(b)=(1 / 2 * 1 / 2) / P(b)=1 / 4 * 1 / P(b)$
$P(L \mid b)=P(b \mid L) P(L) / P(b)=(2 / 3 * 1 / 2) / P(b)=1 / 3 * 1 / P(b)$
Probability to win is now 3:4-pay not more than $\$(3 / 7)$

Suppose it's red: How much should you pay? - the same logic

When you want to

- Determine the probability of having a medical condition after positive test results
- Find out a probable outcome of political elections
- Improve machine-learning performance
- Even to "prove" and "disprove" the existence of God

Use Bayesian Reasoning

Mathematical predictions

- We can 'predict' where the spacecraft will be at noon in 2 months from now
- We cannot predict where you will be tomorrow at noon
- But, based on numerous observations (evidence), we can estimate the probability

Need for probabilistic learners

- Given the evidence (data),
can we certainly derive the diagnostic rule:
if Toothache=true then Cavity=true ?
- This rule isn't right always.

Name	Toothache	\ldots	Cavity
Smith	true	\ldots	true
Mike	true	\ldots	true
Mary	false	\ldots	true
Quincy	true	\ldots	false
\ldots	\ldots	\ldots	\ldots

Historical data

- Not all patients with toothache have cavities - some of them have gum disease, an abscess, etc.
- We could try an inverted rule:
if Cavity=true then Toothache=true
- But this rule isn't necessarily right either; not all cavities cause pain.

Certainty and Probability

- The connection between toothaches and cavities is not a certain logical consequence in either direction.
- However, we can provide a probability that given an evidence (toothache) the patient has cavity.
- For this we need to know:
- Prior probability of having cavity: how many times dentist patients had cavities: P(cavity)
- The number of times that the evidence (toothache) was observed among all cavity patients: P (toothache |cavity)

Bayes' Rule

for diagnostic probability

Bayes' rule:

$$
P(A \mid B)=P(A) * P(B \mid A) / P(B)
$$

- Useful for assessing diagnostic probability from symptomatic probability as:
P(Cause Symptom $)=P($ Symptom $/$ Cause) $P($ Cause $) / P($ Symptom $)$
- Bayes's rule is useful in practice because there are many cases where we do have good probability estimates for these three numbers and need to compute the fourth

