Nalve Bayes

Lecture 02.01

Statistics is a tool to aid and organize our
reasoning and beliefs about the world



Today

Belief and evidence

Empirical reasoning: always probabilistic
Inductive reasoning with probabilities
Bayes method for updating beliefs
Naive Bayes classifier



Belief and evidence
Inductive reasoning

Critical thinking: always have good reasons for your beliefs
Some reasons are 100% true
Some only probable

Inductive reasoning with probabilities: you always have a
chance of being wrong

http://www.starwars.com/video/never-tell-me-the-odds



http://www.starwars.com/video/never-tell-me-the-odds

| believe that John will not be at
the party

In the absence of facts

John will not be at the party

“T“

What are the odds?



| believe that John will not be at
the party

Invalid reasoning

| do not like John

N\

John will not be at the party

“T“

What are the odds?



| believe that John will not be at
the party

Probabilistic reasoning: valid fact (evidence)

| do not like John John is very shy

N\ 4

John will not be at the party

“T“

What are the odds given this fact?



| believe that John will not be at
the party

More facts — update your beliefs

| do not like John John is in Beijing John is very shy

N7

John will not be at the party

What are the odds?



Bayesian beliefs

* How do we judge that something is
true?

 Can mathematics help make
judgments more accurate?

* Bayes: our believes should be
updated as new evidence becomes

available

1701 -1761



Bayes’ method for updating beliefs

There are 2 events: A and not A (B) which you believe occur
with probabilities P(A) and P(B). Estimation P(A):P(B)
represents odds of A vs. B.

Collect evidence data E.
Re-estimate P(A|E):P(B|E) and update your beliefs.



Probabilities. Bayes theorem

Bayes theorem (formalized by Laplace)

P(AIE) =P(AN E)/ P(E)
P(EJA) = P(AN E)/ P(A)

!

Probability of Probability of
event A given evidence given
evidence event A

P(AIE) = P(E|A)P(A)/P(E)

Probability of event
A without evidence
(prior probability)

Inverse probabilities are typically easier to ascertain



Bayes’ method with probabilities

There are 2 events: A and not A (B) which you believe occur
with probabilities P(A) and P(B). Estimation P(A):P(B)
represents odds of A vs. B.

Collect evidence data E.
Re-estimate P(A|E):P(B|E) and update your beliefs.

The updated odds are computed as:

P(AIE) _ P(E|AP(A)/P(E)
P(BIE) ~ P(E|B)P(B)/P(E)




Bayes’ method with probabilities

There are 2 events: A and not A (B) which you believe occur
with probabilities P(A) and P(B). Estimation P(A):P(B)
represents odds of A vs. B.

Collect evidence data E.
Re-estimate P(A|E):P(B|E) and update your beliefs.

or simply

P(AIE) _ P(EIAP(A)
P(B|E) P(E|B)P(B)



Explanation by example:

hit-and-run (fictitious)

e Taxicab company has 75 blue cabs (B)
and 15 green cabs (G)

* At night when there are no other cars .

on the street: hit-and-run episode @ |

* Question: what is more probable:

B or
?

Adopted from: The numbers behind NUMB3RS: solving crime with mathematics by Devlin and Lorden.



What is more probable:
B or

blue green

P(B):P(G)=5:1



New evidence

* Witness: “l saw a green cab”:

 What is the probability that the witness really saw a green
car?

* Witness is tested at night conditions: identifies correct color 4
times out of 5

* The eyewitness test shows:
P(E. | G)=4/5 (correctly identified)
P(E. | B)=1/5 (incorrectly identified)



Updating the odds

* In our case we want to compare:

the car was G given a witness testimony E.: P(G|E)
VS.

the car was B given a witness testimony E: P(B | E,)

Note: There is no way to know which of 2 was true, we just
estimate



Back to hit-and-run

All cabs were on the streets:
Prior odds ratio: P(B) : P(G) =5/1

Updated odds ratio: P(BIEc) -  P(B)*P(E;|B)
P(G|Eg) P(G)*P(E;| G)

P(E. | G)=4/5 (correctly identified)
P(E. | B)=1/5 (incorrectly identified)




New odds

P(BIE;) _ P(B)*P(E|B)
PGIE)  P(G)*P(E,|G)

Still 5:4 odds that the car was B!




Hit-and-run: full calculation

P(B) =5/6, P(G)=1/6
P(E; | G)=4/5 P(E; | B)=1/5

* Probability that car was green given the evidence E:
P(G|Eg)=P(G)* P(E;|G) /P(E;) = [1/6 * 4/5] / P(Eg) =4/30P(Eg)
//- 4 parts of 30P(X;)

* Probability that car was blue given the evidence X:
P(B|Eg) = P(B)* P(E;|B) /P(Eg) = [5/6 * 1/5] /P(E;)  =5/30P(E)
//- 5 parts of 30P(X;)



Bayes in ‘real’ life. Example 1

P(H)=1/10

P(F)=1/40
P(H|F)=1/2

P(F|H) =?




Bayes in ‘real’ life. Example 1

P(H)=1/10

P(F)=1/40
P(H|F)=1/2

P(F[H) =P(H|F)P(F)/P(H)
=1/2*1/40 *10=1/8




Bayes in ‘real’ life. Example 2

S~ IN

~— )
eoee [ FLOO XY
WIN envelope LOSE envelope

Someone draws an envelope at random and offers to sell it to you.
How much should you pay?
The probability to win is 1:1. Pay no more than 50c.



Bayes in ‘real’ life. Example 2

S~ IN

~— )
eoee [ FLOO XY
WIN envelope LOSE envelope

Variant: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it’s black: How much should you pay?

Suppose it’s red: How much should you pay?



Bayes in ‘real’ life. Example 2

S~ IN

eoee | 5100 000

WIN envelope LOSE envelope

Variant: before deciding, you are allowed to see one bead
drawn from the envelope.

Suppose it’s black: How much should you pay?
P(W|Db)=P(b|W)P(W)/P(b) =(1/2*1/2)/P(b)=1/4 *1/P(b)
P(L|b)=P(b[L)P(L)/P(b)=(2/3*1/2)/P(b) = 1/3 * 1/P(b)
Probability to win is now 3:4 — pay not more than $(3/7)

Suppose it’s red: How much should you pay? — the same logic



When you want to

Determine the probability of having a medical
condition after positive test results

Find out a probable outcome of political elections

Improve machine-learning performance

Even to “prove” and “disprove” the existence of God

Use Bayesian Reasoning


http://www.scielo.br/pdf/csp/v31n1/0102-311X-csp-31-01-00026.pdf
http://journals.sagepub.com/doi/abs/10.1177/2158244015579724
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
https://www.amazon.com/Probability-God-Simple-Calculation-Ultimate/dp/1400054788
https://www.youtube.com/watch?v=NFGTu-OxFpU

Mathematical predictions

We can ‘predict’ where the spacecraft will be at noon in 2
months from now

We cannot predict where you will be tomorrow at noon

But, based on numerous observations (evidence), we can
estimate the probability



Need for probabilistic learners

e Given the evidence (data),

can we certainly derive

the diagnostic rule:

if Toothache=true then Cavity=true ?

e This rule isn’t right always.

Name | Toothache Cavity
Smith true true
Mike true true
Mary false true
Quincy | true false

Historical data

— Not all patients with toothache have cavities - some of them

have gum disease, an abscess, etc.

e We could try an inverted rule:
if Cavity=true then Toothache=true

e But this rule isn’t necessarily right either; not all cavities cause

pain.




Certainty and Probability

The connection between toothaches and cavities is not a
certain logical consequence in either direction.

However, we can provide a probability that given an evidence
(toothache) the patient has cavity.

For this we need to know:

— Prior probability of having cavity: how many times dentist
patients had cavities: P(cavity)

— The number of times that the evidence (toothache) was observed
among all cavity patients: P(toothache|cavity)



Bayes' Rule
for diagnostic probability

Bayes' rule:

P(A|B)=P(A)*P(B|A)/P(B)

o Useful for assessing diagnostic probability from symptomatic
probability as:

P(Cause|Symptom) = P(Symptom |Cause) P(Cause) / P(Symptom)

e Bayes’s rule is useful in practice because there are many cases
where we do have good probability estimates for these three
numbers and need to compute the fourth



