
Naïve Bayes

Lecture 02.01

Statistics is a tool to aid and organize our 
reasoning and beliefs about the world



Today

• Belief and evidence

• Empirical reasoning: always probabilistic

• Inductive reasoning with probabilities

• Bayes method for updating beliefs

• Naïve Bayes classifier



Belief and evidence 
Inductive reasoning

• Critical thinking: always have good reasons for your beliefs

• Some reasons are 100% true

• Some only probable

• Inductive reasoning with probabilities: you always have a 
chance of being wrong

http://www.starwars.com/video/never-tell-me-the-odds

http://www.starwars.com/video/never-tell-me-the-odds


I believe that John will not be at 
the party

John will not be at the party

What are the odds?

yes no

In the absence of facts



I believe that John will not be at 
the party

John will not be at the party

I do not like John

What are the odds?

yes no

Invalid reasoning



I believe that John will not be at 
the party

John will not be at the party

John is very shyI do not like John

What are the odds given this fact?

yes no

Probabilistic reasoning: valid fact (evidence)



I believe that John will not be at 
the party

John will not be at the party

John is in Beijing John is very shyI do not like John

What are the odds?

yes no

More facts – update your beliefs



Bayesian beliefs

• How do we judge that something is 
true?

• Can mathematics help make 
judgments more accurate?

• Bayes: our believes should be 
updated as new evidence becomes 
available

1701 - 1761



Bayes’ method for updating beliefs

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.



Probabilities. Bayes theorem

P(A|E) = P(E|A)P(A)/P(E)

P(A|E) = P(A ∩ E)/ P(E)

P(E|A) = P(A ∩ E)/ P(A)

Bayes theorem (formalized by Laplace)

Probability of 

event A given 

evidence

Probability of 

evidence given 

event A

Probability of event 

A without evidence 

(prior probability)

Inverse probabilities are typically easier to ascertain 



Bayes’ method with probabilities

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.

P(A|E) P(E|A)P(A)/P(E)

The updated odds are computed as:

P(B|E) P(E|B)P(B)/P(E)
=



Bayes’ method with probabilities

• There are 2 events: A and not A (B) which you believe occur 
with probabilities P(A) and P(B). Estimation P(A):P(B) 
represents odds of A vs. B. 

• Collect evidence data E.

• Re-estimate P(A|E):P(B|E) and update your beliefs.

P(A|E) P(E|A)P(A)

or simply

P(B|E) P(E|B)P(B)
=



Explanation by example: 
hit-and-run (fictitious)

• Taxicab company has 75 blue cabs (B) 
and 15 green cabs (G)

• At night when there are no other cars 
on the street: hit-and-run episode

• Question: what is more probable: 

B or G

?

15

15

15

15

15

Adopted from: The numbers behind NUMB3RS: solving crime with mathematics by Devlin and Lorden.

15



What is more probable: 
B or G

15

15 15

15 15

15

blue green

P(B):P(G)=5:1



New evidence

• Witness: “I saw a green cab”: EG

• What is the probability that the witness really saw a green 
car?

• Witness is tested at night conditions: identifies correct color 4 
times out of 5

• The eyewitness test shows:

P(EG | G)= 4/5  (correctly identified)

P(EG | B)= 1/5  (incorrectly identified)



Updating the odds

• In our case we want to compare:

the car was G given a witness testimony EG: P(G|EG)

vs.

the car was B given a witness testimony EG: P(B|EG)

Note: There is no way to know which of 2 was true, we just 
estimate



Back to hit-and-run
All cabs were on the streets: 

Prior odds ratio: P(B) : P(G) = 5/1

15

15 15

15 15

15

blue green

P(B|EG) P(B)*P(EG|B)   
P(G|EG) P(G)*P(EG|G)

=

P(EG | G)= 4/5  (correctly identified)

P(EG | B)= 1/5  (incorrectly identified)

Updated odds ratio:  



New odds

15 12

blue green

P(B|EG) P(B)*P(EG|B)   
P(G|EG) P(G)*P(EG|G)

=

Still 5:4 odds that the car was B!



Hit-and-run: full calculation
P(B) =5/6,  P(G) = 1/6 

P(EG | G)= 4/5  P(EG | B)= 1/5  

• Probability that car was green given the evidence EG:

P(G|EG)= P(G)* P(EG|G) /P(EG) = [1/6 * 4/5] / P(EG) =4/30P(EG)   

//- 4 parts of 30P(XG)

• Probability that car was blue given the evidence XG:

P(B|EG) = P(B)* P(EG|B) /P(EG) = [5/6 * 1/5] /P(EG) =5/30P(EG)  

//- 5 parts of 30P(XG)



Bayes in ‘real’ life. Example 1

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =?



Bayes in ‘real’ life. Example 1

HEADACHE

FLU

P(H)=1/10
P(F)=1/40
P(H|F)=1/2

P(F|H) =P(H|F)P(F)/P(H)
=1/2*1/40 *10=1/8



Bayes in ‘real’ life. Example 2

Someone draws an envelope at random and offers to sell it to you.
How much should you pay?
The probability to win is 1:1. Pay no more than 50c.

WIN envelope LOSE envelope

$1.00



Bayes in ‘real’ life. Example 2

Variant: before deciding, you are allowed to see one bead 
drawn from the envelope.
Suppose it’s black: How much should you pay?
Suppose it’s red: How much should you pay?

WIN envelope LOSE envelope

$1.00



Bayes in ‘real’ life. Example 2

Variant: before deciding, you are allowed to see one bead 
drawn from the envelope.
Suppose it’s black: How much should you pay?
P(W|b)=P(b|W)P(W)/P(b) =(1/2*1/2)/P(b)=1/4 *1/P(b)
P(L|b)=P(b|L)P(L)/P(b)=(2/3*1/2)/P(b) = 1/3 * 1/P(b)
Probability to win is now 3:4 – pay not more than $(3/7) 

Suppose it’s red: How much should you pay? – the same logic

WIN envelope LOSE envelope

$1.00



When you want to

• Determine the probability of having a medical 
condition after positive test results

• Find out a probable outcome of political elections

• Improve machine-learning performance

• Even to “prove” and “disprove” the existence of God

Use Bayesian Reasoning

http://www.scielo.br/pdf/csp/v31n1/0102-311X-csp-31-01-00026.pdf
http://journals.sagepub.com/doi/abs/10.1177/2158244015579724
http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf
https://www.amazon.com/Probability-God-Simple-Calculation-Ultimate/dp/1400054788
https://www.youtube.com/watch?v=NFGTu-OxFpU


Mathematical predictions

• We can ‘predict’ where the spacecraft will be at noon in 2 
months from now

• We cannot predict where you will be tomorrow at noon

• But, based on numerous observations (evidence), we can 
estimate the probability



Need for probabilistic learners

• Given the evidence (data),  

can we certainly derive 

the diagnostic rule: 

if Toothache=true then Cavity=true ?

• This rule isn’t right always.  

– Not all patients with toothache have cavities - some of them 
have gum disease, an abscess, etc.

• We could try an inverted rule:

if Cavity=true then Toothache=true

• But this rule isn’t necessarily right either; not all cavities cause 
pain.

Name Toothache … Cavity

Smith true … true

Mike true … true

Mary false … true

Quincy true … false

… … … …

Historical data



Certainty and Probability
• The connection between toothaches and cavities is not a 

certain logical consequence in either direction.

• However, we can provide a probability that given an evidence 
(toothache) the patient has cavity. 

• For this we need to know:

– Prior probability of having cavity: how many times dentist 
patients had cavities: P(cavity)

– The number of times that the evidence (toothache) was observed 
among all cavity patients: P(toothache|cavity)



Bayes' Rule 
for diagnostic probability

Bayes' rule: 

• Useful for assessing diagnostic probability from symptomatic
probability as:

P(Cause|Symptom) = P(Symptom|Cause) P(Cause) / P(Symptom)

• Bayes’s rule is useful in practice because there are many cases 
where we do have good probability estimates for these three 
numbers and need to compute the fourth

P(A|B)=P(A)*P(B|A)/P(B)


