# Bayesian Belief Networks 

Lecture 02.03

## Joint probability: A $\cap$

What is the general probability of both $A$ and $B$ being True

- General (global) probability of $A$ and $B$ : $P(A, B)=P(B \mid A) * P(A)=4 / 20 * 20 / 60=4 / 60$



## Joint probability: $\mathrm{A} \cap \mathrm{B} \cap \mathrm{C}$

- General (global) probability of
$A$ and $B$ and $C$ :



## Naïve Bayes as a graph (network)



This graph states that there is a probabilistic dependence between C and each $\mathrm{E}_{\mathrm{i}}$. The probability of one of these variables (Class to predict) is influenced by the probabilities of the rest of the variables (set of evidences) and vice versa: $P(C \mid E) \neq P(C)$, and $P(E \mid C) \neq P(E)$

## Bayesian networks model joint probability distribution for all variables



$$
\begin{aligned}
& P(c \mid e 1, e 2, e 3, e 4)=P(c, e 1, e 2, e 3, e 4) / P(e 1, e 2, e 3, e 4)=\alpha P(c, e 1, e 2, e 3, e 4) \\
& P(\neg c \mid e 1, e 2, e 3, e 4)=P(\neg c, e 1, e 2, e 3, e 4) / P(e 1, e 2, e 3, e 4)=\alpha P(\neg c, e 1, e 2, e 3, e 4)
\end{aligned}
$$

In fact, for prediction, it is enough to compute the joint probability of all known variables e1..e4-for c and cc , and to compare

## Joint probability when e1-e3 are mutually independent events

- $P(c \mid e 1, e 2, e 3)=P(c, e 1, e 2, e 3) / P(e 1, e 2, e 3)$
- $P(c \mid E)=P\left(c \cap_{\uparrow} E\right) / P(E)$

Joint probability of all variables in the network

We can compute the probability of all these events to happen together:

- $P(c \cap e 1 \cap e 2 \cap e 3)=P(e 1 \mid c) P(e 2 \mid c) P(e 3 \mid c) * P(c)$

We multiply $\mathrm{P}\left(\mathrm{e}_{\mathrm{i}} \mid \mathrm{c}\right)$ because we assume: there is no probabilistic dependence between $e_{i}$ and $e_{j}$, given the parent value $C$

## Naïve Bayes



## More complex dependencies



What if E1 and E2 are not independent?
For each node with more than 1 parent we need Conditional Probability Table (CPT) with probability distribution for all possible combinations of parent variables:

CPT for attribute E2

|  |  | $E 2$ |  |
| :--- | :--- | :--- | :--- |
| $C$ | E1 | $e 2$ | $\neg e 2$ |
| $c$ | e 1 | $P(e 2 \mid c, e 1)$ |  |
| $c$ | $\neg \mathrm{e} 1$ |  |  |
| $\neg c$ | e 1 |  |  |
| $\neg c$ | $\neg \mathrm{e} 1$ |  |  |

## Using the chain rule for complex dependencies



$$
\begin{aligned}
& P(c \mid e 1, e 2)=\alpha P(c) P(e 1 \mid c) P(e 2 \mid c, e 1) \\
& P(\neg c \mid e 1, e 2)=\alpha P(\neg c) P(e 1 \mid \neg c) P(e 2 \mid \neg c, e 1)
\end{aligned}
$$

C does not have parents, so its probability is unconditional

After all CPTs are computed for each node given all possible combinations of values of its parents, the joint probability is computed by the same chain rule.

CPT for attribute E2

|  |  | $E 2$ |  |
| :--- | :--- | :--- | :--- |
| $C$ | $E 1$ | $e 2$ | $\neg e 2$ |
| $c$ | $e 1$ | $P(e 2 \mid c, e 1)$ |  |
| $c$ | $\neg e 1$ |  |  |
| $\neg c$ | $e 1$ |  |  |
| $\neg c$ | $\neg e 1$ |  |  |

## Using the chain rule for complex

## dependencies



$$
\begin{aligned}
& P(c \mid e 1, e 2)=\alpha P(c) P(e 1 \mid c) P(e 2 \mid c, e 1) \\
& P(\neg c \mid e 1, e 2)=\alpha P(\neg c) P(e 1 \mid \neg c) P(e 2 \mid \neg c, e 1)
\end{aligned}
$$

E1 has 1 parent so its probability is conditioned on C

|  |  | $E 2$ |  |
| :--- | :--- | :--- | :--- |
| $C$ | E1 | e 2 | $\neg \mathrm{e} 2$ |
| $c$ | e 1 | $\mathrm{P}(\mathrm{e} 2 \mid \mathrm{c}, \mathrm{e} 1)$ |  |
| $c$ | $\neg \mathrm{e} 1$ |  |  |
| $\neg c$ | e 1 |  |  |
| $\neg c$ | $\neg \mathrm{e} 1$ |  |  |

## Using the chain rule for complex

## dependencies



$$
\begin{aligned}
& P(c \mid e 1, e 2)=\alpha P(c) P(e 1 \mid c) P(e 2 \mid c, e 1) \\
& P(-c \mid e 1, e 2)=\alpha P(-c) P(e 1 \mid-c) P(e 2 \mid \uparrow c, e 1)
\end{aligned}
$$

E2 has 2 parents so its probability is conditioned on both C and E1

|  |  | $E 2$ |  |
| :--- | :--- | :--- | :--- |
| $C$ | $E 1$ | $e 2$ | $\neg \mathrm{e} 2$ |
| $c$ | e 1 | $\mathrm{P}(\mathrm{e} 2 \mid c, \mathrm{e} 1)$ |  |
| $c$ | $\neg \mathrm{e} 1$ |  |  |
| $\neg c$ | e 1 |  |  |
| $\neg c$ | $\neg \mathrm{e} 1$ |  |  |

## Estimating joint probabilities

- In a complex network of interrelated variables, it is easier to think in terms of joint probability of all known variables rather than a conditional probability of a class given evidence set
- This way we can predict not only a single attribute (Class) but also any other attribute, given that we know some evidences
- Instead of comparing:

$$
\begin{aligned}
& P(c \mid e 1, e 2)=\alpha P(c) P(e 1 \mid c) P(e 2 \mid c, e 1) \\
& P(\neg c \mid e 1, e 2)=\alpha P(\neg c) P(e 1 \mid \neg c) P(e 2 \mid \neg c, e 1)
\end{aligned}
$$

- Compare just:

$$
\begin{aligned}
& P(c) P(e 1 \mid c) P(e 2 \mid c, e 1) \\
& P(\neg c) P(e 1 \mid \neg c) P(e 2 \mid \neg c, e 1)
\end{aligned}
$$

## Explanation by example: predicting rain



We know that Sprinkler was off: $S=\neg s$ and grass is wet: $\mathrm{G}=\mathrm{g}$

Was it raining?
$P(r \mid g, \neg s)=$ ?
$P(\neg r \mid g, \neg s)=$ ?

## Wet Grass example: predicting rain



## Wet Grass example: predicting rain



Definitely, it was raining

## Wet Grass example: hidden variables



All we know that the grass is wet:
$\mathrm{G}=\mathrm{g}$
$P(r \mid g)=$ ?
The value of $S$ is unknown: $S$ is a hidden variable which influences $G$ and depends on R. We need to include it into the joint probability:


## Wet Grass example: hidden variables



All we know that the grass is wet:

$$
\begin{aligned}
& G=g \\
& P(r \mid g)=? \\
& P(r \mid g)=\alpha P\left(r, g, S_{T v F}\right) \\
& =\alpha P(r) P\left(S_{T v F} \mid r\right) P\left(g \mid r, S_{T v F}\right)= \\
& =\alpha P(r) * \\
& {[P(s \mid r) P(g \mid r, s)+P(\neg s \mid r) P(g \mid r,-s)]}
\end{aligned}
$$

We add because we don't know the value of $S$, and we consider it as being or false, or true.
We apply theorems V, VI from PROBABILITY slides

## Hidden (missing) evidences

- For each hidden variable consider all possible values of this variable and perform summation by substituting this variable with all possible values in turn


## Bayesian Belief Networks (BBN)

- BBN is a graphical representation (Directed acyclic graph (DAG) - no cycles) of probabilistic dependencies between variables
- They combine reasoning with probabilities
- Nodes: random variables
- At each node: Conditional Probability Table (CPT) - the probabilities for all different values of the node variable given all possible value combinations of its parents
- The directed edges show probabilistic influence - dependence between variables. Edges can be drawn in any direction: the direction is application-dependent



## BBN types: possible meaning of edges

Causal BBN


Increased probability of $A$ makes B more likely.

A causes B

We know $P(B \mid A)$ diagnostics

Intercausal

$A$ and $B$ can each cause $C$. $B$ explains $C$ and so is evidence against A

Evidential



Increased probability of B makes A more likely.
$B$ is evidence for $A$, $A$ depends on $B$

We need to know $P(C \mid A)$, $P(C \mid B)$, and $P(C \mid A, B)$

## Using Bayesian Belief Networks for prediction

- Each query asks for a joint probability which is computed by applying the chain rule (multiplying corresponding conditional probabilities for each variable involved in the query and its dependants)
- This is because all conditional probabilities for each node given its parent are in CPTs, and each query for conditional probability of a parent given its children can be computed using Bayes theorem


## Example: weather data



After all CPTs are filled in, we can perform any query on joint distribution

## Joint probability: weather data


$P($ Yes $\mid$ Sunny,Cool,High,True) $=\alpha$ P(Yes,Sunny,Cool,High,True) $=\alpha P($ Yes $) P($ Sunny $\mid$ Yes) P(Cool|Yes,Sunny) P(High |Yes, Cool) P (True| Yes, Sunny)

## Joint probability: weather data



P(Yes|Sunny,Cool,High,True)= $\alpha$ P(Yes,Sunny,Cool,High,True) $=\alpha$ P(Yes) P(Sunny $\mid$ Yes) P(Cool|Yes,Sunny) P(High|Yes, Cool) P (True| Yes, Sunny)
All these probabilities are known - just plug them in and compute

## Markov Blanket Assumption

- All nodes in the network are connected in some way
- The key feature of Bayesian Networks, which allows us to use the chain rule, is the assumption that the probability of each node is influenced only by the nodes in the Markov blanket of this node:
- The Markov blanket of a node is its set of neighboring nodes: its parents, its children, and any other parents of its children.
- No grandparents, no grandchildren, no children of its parent.


## Markov Blanket of node A



- The Markov blanket of a node contains all the variables that shield the node from the rest of the network.
- This means that the Markov blanket of a node is the only knowledge needed to predict the behavior of that node.


## The Markov blanket assumption



- Markov blanket assumes that $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A})$ - probability of A is not influenced by the value of $B$, if $B$ is outside of the blanket
- This corresponds to our intuition about probabilistic influences


## Example 1: Markov blanket of S



## Example 1: Markov blanket of S


$P(S \mid R)>P(S)$
Thus, S in general is not independent of R :
$R$ makes $C$ more probable, which in turn influences the probability of $S$.
However, $P(S \mid C)$ is independent of $R$ : if we know the value of $C$ ( $C$ is given), then $R$ does not influence the probability of $S$ :
$P(S \mid C, R)=P(S \mid C) \quad-C$ 'shields' node $S$ from the influence of $R$

## Example 2: Markov blanket of B



```
Include:
parents
children
parents of its children
Do not include:
grandparents
grandchildren
children of its parent
```


## Example 2: Markov blanket of B



## Include:

parents children
parents of its children
Do not include: grandparents grandchildren children of its parent
$P(B \mid E)=P(B)$ (independent), but $P(B \mid A, E)<P(B \mid A)$
If you hear an alarm, you might evaluate the probability of $B$, but if you know that there was an earthquake, this probability decreases:
$E$ 'discounts' $B, E$ is evidence against $B$, and it should be included in its Markov blanket together with A

## Example 3: Markov blanket of C



Include:<br>parents<br>children<br>parents of its children<br>Do not include:<br>grandparents<br>grandchildren<br>children of its parent

## Example 3: Markov blanket of C



## Alarm example



Query: what is the probability of John calling given that Mary called

## Alarm example



Query: what is the probability of Alarm given that John called

## Alarm example



Query: what is the probability of Burglary given that John called and Mary called

## High Blood Pressure example



Query: what is the probability of Heart disease given chest pain

## Algorithm for classification using BBN

- In complex networks: select a subset of nodes which are inside Market blankets of nodes participating in the query
- Compute joint probabilities of all these nodes by the chain rule, substituting random variables by the evidence values
- If some of the values are unknown (hidden), sum up over all possible values


## Bayesian Belief Networks: applications

- Very important technology in the Machine Learning / Al field
- A clean, clear, manageable language and methodology for expressing what you're certain and uncertain about
- Many practical applications in medicine, factories, helpdesks:

P (this problem | these symptoms)
anomalousness of this observation
choosing next diagnostic test | these observations

## Pathfinder system*

- Diagnostic system for lymph-node diseases.
- 60 diseases and 100 symptoms and test-results.
- 14,000 probabilities
- Experts consulted to make net. Apparently, the experts found it quite easy to invent the causal links and probabilities.
- 8 hours to determine variables.
- 35 hours for net topology.
- 40 hours for probability table values.
- Pathfinder is now outperforming the world experts in diagnosis.
- Being extended to several dozen other medical domains.

[^0]EXERCISES

## I: Burglary

- I'm at work, neighbor John calls to say my alarm is ringing, and also my neighbor Mary calls. Sometimes the alarm is set off by minor earthquakes. Is there a burglar?
- John always calls when he hears the alarm, but sometimes confuses the telephone ringing with the alarm.
- Mary likes rather loud music and sometimes misses the alarm.
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call


The topology shows that burglary and earthquakes directly affect the probability of alarm, but whether Mary or John call depends only on the alarm.

Our assumptions are that they don't perceive any burglaries directly, and they don't confer before calling.

## I: Prediction

- Suppose, we are given for the evidence variables $E_{1}, \ldots, E_{m}$, their values $e_{1}, \ldots, e_{m}$, and we want to predict whether the query variable $X$ has the value $x$ or not.
- For this we compute and compare the following:

$$
\begin{aligned}
& P\left(x \mid e_{1}, \ldots, e_{m}\right)=\frac{P\left(x, e_{1}, \ldots, e_{m}\right)}{P\left(e_{1}, \ldots, e_{m}\right)}=\alpha P\left(x, e_{1}, \ldots, e_{m}\right) \\
& P\left(\neg x \mid e_{1}, \ldots, e_{m}\right)=\frac{P\left(\neg x, e_{1}, \ldots, e_{m}\right)}{P\left(e_{1}, \ldots, e_{m}\right)}=\alpha P\left(\neg x, e_{1}, \ldots, e_{m}\right)
\end{aligned}
$$

- How do we compute:

$$
\begin{aligned}
& \alpha P\left(x, e_{1}, \ldots, e_{m}\right) \\
& \quad \text { and } \\
& \alpha P\left(\neg x, e_{1}, \ldots, e_{m}\right) ?
\end{aligned}
$$

$$
\text { and } \quad Y_{1}, \ldots, Y_{k} \text { ? }
$$

## I: Classification of burglary and earthquake

- We are given for the evidence variables $J=j$ and $M=m$, and we want to predict whether the query variable $B$ has the value $b$ or not $b$.
- However, to evaluate the probability of $B$ we need to know: whether alarm really went off and whether it was an earthquake.
- $A$ and $E$ are hidden variables

$$
\begin{aligned}
& \alpha P\left(x, e_{1}, \ldots, e_{m}\right) \\
& \quad \text { and }
\end{aligned}
$$

$$
\alpha P\left(\neg x, e_{1}, \ldots, e_{m}\right) ?
$$



## I: Inference by enumeration

$P($ burglary $\mid$ johhcalls, marycalls $)$ ? (Abbrev. $P(b \mid j, m)$ )
$P(b \mid j, m)$
$=\alpha P(b, j, m)$
$=\alpha \sum_{a} \sum_{e} P(b, j, m, A, E)$
Or
$=\alpha(P(b, j, m, a, e)+P(b, j, m, \neg a, e)+P(b, j, m, a, \neg e)+P(b, j, m, \neg a, \neg e))$
Alarm rings,
earthquake
In general:

$$
P\left(x \mid e_{1}, \ldots, e_{m}\right)=\alpha P\left(x, e_{1}, \ldots, e_{m}\right)=\sum_{y_{1}} \ldots \sum_{y_{k}} P\left(x, e_{1}, \ldots, e_{m}, y_{1}, \ldots, y_{k}\right)
$$

$$
P\left(\neg x \mid e_{1}, \ldots, e_{m}\right)=\alpha P\left(\neg x, e_{1}, \ldots, e_{m}\right)=\sum_{y_{1}} \ldots \sum_{y_{k}} P\left(\neg x, e_{1}, \ldots, e_{m}, y_{1}, \ldots, y_{k}\right)
$$ where $y 1, \ldots y k$ are hidden variables

## I: $P(b \mid j, m)$

$$
\begin{aligned}
& P(b \mid j, m)=\alpha P(b) \sum_{a} P(j \mid a) P(m \mid a) \sum_{e} P(a \mid b, e) P(e) \\
& =\alpha P(b) \sum_{a} P(j \mid a) P(m \mid a)(P(a \mid b, e) P(e)+P(a \mid b, \neg e) P(\neg e)) \\
& =\alpha P(b)(P(j \mid a) P(m \mid a)(P(a \mid b, e) P(e)+P(a \mid b, \neg e) P(\neg e)) \\
& \quad \quad+P(j \mid \neg a) P(m \mid \neg a)(P(\neg a \mid b, e) P(e)+P(\neg a \mid b, \neg e) P(\neg e))) \\
& =\alpha^{*} .001^{*}\left(.9^{*} .7^{*}\left(.95^{*} .002+.94^{*} .998\right)+.05^{*} .01^{*}\left(.05^{*} .002+.71^{*} .998\right)\right) \\
& =\alpha^{*} .00059
\end{aligned}
$$



## I: $P(\neg b \mid j, m)$

$P(\neg b \mid j, m)=\alpha P(\neg b) \sum_{a} P(j \mid a) P(m \mid a) \sum_{e} P(a \mid \neg b, e) P(e)$

$$
=\alpha P(\neg b) \sum_{a} P(j \mid a) P(m \mid a)(P(a \mid \neg b, e) P(e)+P(a \mid \neg b, \neg e) P(\neg e))
$$

$$
=\alpha P(\neg b)(P(j \mid a) P(m \mid a)(P(a \mid \neg b, e) P(e)+P(a \mid \neg b, \neg e) P(\neg e))
$$

$$
+P(j \mid \neg a) P(m \mid \neg a)(P(\neg a \mid \neg b, e) P(e)+P(\neg a \mid \neg b, \neg e) P(\neg e)))
$$

$=\alpha * .999 *\left(.9 * .7^{*}(.29 * .002+.001 * .998)+.05 * .01 *\left(.71 * .002+.999^{*} .998\right)\right)$
$=\alpha * .0015$


## I: Finally...


$P(b \mid j, m)=\alpha P(b) \sum_{a} P(j \mid a) P(m \mid a) \sum_{e} P(a \mid b, e) P(e)=\ldots=\alpha^{*} 0.00059$
$P(\neg b \mid j, m)=\alpha P(\neg b) \sum_{a} P(j \mid a) P(m \mid a) \sum_{e} P(a \mid \neg b, e) P(e)=\ldots=\alpha^{*} 0.0015$
$\mathbf{P}(\mathrm{B} \mid j, m)=\alpha<0.00059,0.0015>=<0.28,0.72>$.

## IIA: High Blood Pressure



Once the right topology has been found. the probability table associated with each node is determined from the data.
Estimating such probabilities similar to the approach used by naïve Bayes classifiers is done by counting rows where all the assignments of variables hold.

## IIA: High Blood Pressure

- Suppose we get to know that the new patient has high blood pressure.
- What's the probability he has heart disease under this condition?


## Heart disease: Yes

$$
\begin{aligned}
& P(h d \mid b p)=\alpha \sum_{e} \sum_{d} \sum_{h} \sum_{c p} P(h d, E, D, H, C P, b p) \\
& =\alpha \sum_{e} \sum_{d} \sum_{h} \sum_{c p} P(h d \mid E, D) P(H \mid D) P(C P \mid h d, H) P(b p \mid h d) P(E) P(D) \\
& =\alpha P(b p \mid h d) \sum_{e} P(E) \sum_{d} P(h d \mid E, D) P(D) \sum_{h} P(H \mid D) \sum_{c p} P(C P \mid h d, H) \\
& =\alpha P(b p \mid h d) \sum_{e} P(E) \sum_{d} P(h d \mid E, D) P(D) \\
& =\alpha P(b p \mid h d) P(e)(P(h d \mid e, d) P(d)+P(h d \mid e, \neg d) P(\neg d)) \\
& +\alpha P(b p \mid h d) P(\neg e)(P(h d \mid \neg e, d) P(d)+P(h d \mid \neg e, \neg d) P(\neg d)) \\
& =\alpha^{*} 0.85^{*} 0.7 *(0.25 * 0.25+0.45 * 0.75) \\
& +\alpha * 0.85 * 0.3 *(0.55 * 0.25+0.75 * 0.75) \\
& =\alpha^{*} 0.4165
\end{aligned}
$$

## IIA: High Blood Pressure

## Heart disease: No

$$
P(\neg h d \mid b p)=\alpha \sum_{e} \sum_{d} \sum_{h} \sum_{c p} P(\neg h d, E, D, H, C P, b p)
$$

$$
=\alpha \sum_{c} \sum_{d} \sum_{h} \sum_{c p} P(\neg h d \mid e, d) P(h \mid d) P(C P \mid \neg h d, H) P(b p \mid \neg h d) P(E) P(D)
$$

$$
=\alpha P(b p \mid \neg h d) \sum_{e} P(E) \sum_{d} P(\neg h d \mid E, D) P(D) \sum_{h} P(H \mid D) \sum_{c p} P(C P \mid \neg h d, H)
$$

$$
=\alpha P(b p \mid \neg h d) \sum_{e} P(E) \sum_{d} P(\neg h d \mid E, D) P(D)
$$

$$
=\alpha P(b p \mid \neg h d) P(e)(P(\neg h d \mid e, d) P(d)+P(\neg h d \mid e, \neg d) P(\neg d))
$$

$$
+\alpha P(b p \mid \neg h d) P(\neg e)(P(\neg h d \mid \neg e, d) P(d)+P(\neg h d \mid \neg e, \neg d) P(\neg d))
$$

$$
=\alpha * 0.2 * 0.7 *(0.75 * 0.25+0.55 * 0.75)
$$

$$
+\alpha * 0.2 * 0.3 *(0.45 * 0.25+0.25 * 0.75)
$$

$$
=\alpha * 0.102
$$

## IIA: High Blood Pressure ( $\alpha$ )

$$
\begin{aligned}
& P(\neg h d \mid b p)=\alpha * 0.102 \\
& P(h d \mid b p)=\alpha * 0.4165
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\frac{1}{0.4165+0.1020}=\frac{1}{0.5185} \\
& P(h d \mid b p)=\alpha^{*} 0.4165=0.8033 \\
& P(\neg h d \mid b p)=\alpha^{*} 0.102=0.1967
\end{aligned}
$$

## IIB: High Blood Pressure, Healthy Diet, Regular Exercise



## IIB: Probability of heart disease

$$
\begin{aligned}
& P(h d \mid b p, d, e)=\alpha \sum_{h} \sum_{c p} P(h d, e, d, H, C P, b p) \\
& =\alpha \sum_{h} \sum_{c p} P(h d \mid e, d) P(H \mid d) P(c p \mid h d, H) P(b p \mid h d) P(e) P(d) \\
& =\alpha P(b p \mid h d) P(e) P(h d \mid e, d) P(d) \sum_{h} P(H \mid d) \sum_{c p} P(C P \mid h d, h) \\
& =\alpha P(b p \mid h d) P(e) P(h d \mid e, d) P(d) \\
& =\alpha^{*} 0.85^{*} 0.7 * 0.25^{*} 0.25=\alpha^{*} 0.03719
\end{aligned}
$$

## IIB: Probability of not heart disease

$$
\begin{aligned}
& P(\neg h d \mid b p, d, e)=\alpha \sum_{h} \sum_{c p} P(\neg h d, e, d, H, C P, b p) \\
& =\alpha \sum_{h} \sum_{c p} P(\neg h d \mid e, d) P(h \mid d) P(C P \mid \neg h d, H) P(b p \mid \neg h d) P(e) P(d) \\
& =\alpha P(b p \mid \neg h d) P(e) P(\neg h d \mid e, d) P(d) \sum_{h} P(H \mid d) \sum_{c p} P(C P \mid \neg h d, h) \\
& =\alpha P(b p \mid \neg h d) P(e) P(\neg h d \mid e, d) P(d) \\
& =\alpha * 0.2 * 0.7 * 0.75 * 0.25=\alpha * 0.02625
\end{aligned}
$$

## II. High Blood Pressure, Healthy Diet, and Regular Exercise

$$
\begin{aligned}
& P(h d \mid b p)=\alpha^{*} 0.4165=0.8033 \\
& P(\neg h d \mid b p)=\alpha^{*} 0.102=0.1967
\end{aligned}
$$

$$
\begin{aligned}
& \alpha=\frac{1}{0.03719+0.02625}=\frac{1}{0.06344} \\
& P(h d \mid b p, d, e)=\alpha^{*} 0.03719=0.5862 \\
& P(\neg h d \mid b p, d, e)=\alpha^{*} 0.02625=0.4138
\end{aligned}
$$

The model therefore suggests that eating healthily and exercising regularly may reduce a person's risk of getting heart disease, even if he has high blood pressure

## III: Solving the mystery

- One early morning the maid was dusting the window when she saw something horrific. Right outside the window lay dead Mr. Boddy. She called the police and a detective was assigned to the case
- The detective, a former computer scientist, always tried to make his job as easy as possible.
- After a brief examination, he determined that Mr. Boddy has been hit over the head with a dull instrument, probably made of metal. The detective found two candidate weapons that matched the crime scene: an extension of Vacuum cleaner (V) used by the maid and a candle Stick (S) used by the butler.
- He took a brief statement from both the Made (M) and the Butler (B), the only two individuals who could have possibly committed the murder.
- Then he went to his office and decided to create BBN to determine whether the murderer is likely to confess


## III: Network topology



- T-time of day when the murder was committed: evening (e) or night ( $n$ )
- W - crime weapon: vacuum (v) or stick (s)
- M- murderer: maid (m) or butler (b)
- C - will confess: yes or no

III: CPT for Time


## III: CPT for Weapon



## III: CPT Murderer



## III: CPT Murderer



## III: CPT Murderer



## III: CPT Murderer



## III: CPT Confession



- The maid has a very strong conscience and she will eventually confess if she committed the murder. The butler is quite opposite

III: The probability of confession (nothing is given)


## III: The probability of confession



## III:The probability of confession



## III: The probability of confession



## III: The probability of non-confession



## Example 3:

## The probability of non-confession




[^0]:    * Heckerman 1991, Probabilistic Similarity Networks, MIT Press, Cambridge MA

