Statistics primer for Bayesian thinking

BOOLEAN VALUED RANDOM VARIABLES

Discrete Boolean-valued random

 variablesA is a Boolean-valued random variable if A denotes an event, and there is some degree of uncertainty as to whether A occurs or not.

Examples:

- $P=p$: The US president in 2023 will be male
- $\mathrm{P}=-\mathrm{p}$: The US president will not be a male
- $\mathrm{H}=\mathrm{h}$: You wake up tomorrow with a headache
- H=-h: No headache

Probabilities

We write $P(A=a)$, or $P(A=$ true) or simple $P(A)$ as "the fraction of possible worlds where $A=a$ is true"

World in which $\mathrm{A}=\neg \mathrm{a}$

$\mathrm{P}(\mathrm{A})$ is the proportion of red blocks out of the blue universe

The Axioms of Probability

 We do not need to prove that:I. $0<=P(A=a)<=1$

II. $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

A B
III. $P(A)+P(\neg A)=1$

Theorems of Probability: Theorem 1

 $\mathrm{P}(-\mathrm{A})=1-\mathrm{P}(\mathrm{A})$

Theorems of Probability: Theorem 2

 $P(A)=P(A \cap B)+P(A \cap \neg B)$

Conditional probability: definition

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

$C P$ definition: $P(A \mid B)=P(A \cap B) / P(B)$

Conditional probability: definition

- $P(A \mid B)=$ fraction of worlds in which A is true out of all the worlds where B is true

$P(\neg A \mid B)=P(\neg A \cap B) / P(B)$

Conditional probability: definition

- $P(B \mid A)=$ fraction of worlds in which B is true out of all the worlds where A is true

$P(B \mid A)=P(A \cap B) / P(A)$

Probabilistic independence

Two random variables A and B are mutually independent if $P(A \mid B)=P(A)$, which means that:

$$
\begin{array}{ll}
P(A \mid B)=P(A) & 15 / 30=30 / 60 \\
P(\neg A \mid B)=P(\neg A) & 15 / 30=30 / 60 \\
P(A \mid \neg B)=P(A) & 15 / 30=30 / 60 \\
P(\neg A \mid \neg B)=P(A) & 15 / 30=30 / 60
\end{array}
$$

Knowing that B is true (or false) does not change the probability of A

Theorems 3. Chain rule

From the definition of conditional probabilities:

$$
P(A \mid B)=P(A \cap B) / P(B)
$$

we can compute $P(A \cap B)$ - that both events happened together:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

If A and B are independent that becomes:

$$
P(A \cap B)=P(A) P(B)
$$

Theorems 4. Bayes theorem

$$
P(A \cap B)=P(A \mid B) P(B)
$$

On the other hand:

$$
\begin{gathered}
P(B \cap A)=P(B \mid A) P(A) \\
\checkmark \\
P(A \mid B) P(B)=P(B \mid A) P(A)
\end{gathered}
$$

and we can express conditional probability of A given B through conditional probability of B given A and unconditional probabilities of A and B :

$$
P(A \mid B)=P(B \mid A) P(A) / P(B)
$$

Independent and mutually

exclusive events

A is independent of B : knowing that B is true (or false) does not change the probability of A :

$$
P(A \mid B)=P(A)
$$

A and B are mutually exclusive - not independent variables: if A is true then B is false, if A is false then B is true with probability $P(B \mid \neg A)$

$$
P(A \cap B)=0
$$

Theorems of Probability 5

A and $\neg A$ are mutually exclusive, so Axiom II:
$P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
becomes:
$P(A$ or $\neg A)=P(A)+P(\neg A)=1$

	not A		A	

Theorems of Probability 6

$$
P(A \cap(B \text { or } \neg B))=P(A)
$$

| | | | |
| :---: | :---: | :---: | :---: | :---: |
| | | | |
| | | | |
| | | | |
| | | | $A \cap \sim B$ |
| | | | |
| | | | $A \cap B$ |
| | | | |

Using Bayes theorem for diagnosis

$$
P(A \mid B)=P(B \mid A) P(A) / P(B)
$$

Let C be a random variable which represents the probability of some condition to be True (you have Pneumonia)

We can consider a general probability of the population to have pneumonia - known from statistical data: $\mathrm{P}(\mathrm{C})$ - prior probability

But you have a symptom - cough. We want to know $P(C \mid E)$, where E is evidence - symptom
$P(C \mid E)=P(E \mid C) P(C) / P(E)$
Most of the times $P(E / C)$ is known, and $P(E)$ is either known or we can get away without it

Multiple Boolean random variables

All theorems for 2 Boolean-valued random variables can be extended to several random variables $C, E_{1}, E_{2}, \ldots, E_{n}$.
Let $C, E_{1}, E_{2}, \ldots, E_{n}$ be Boolean-valued random variables.
For convenience, we will let E denote the n-tuple of random variables $\left(E_{1}, E_{2}, \ldots, E_{n}\right)$

$$
\begin{aligned}
& E_{1}, E_{2}, \ldots, E_{n}=E \\
& P\left(C \cap E_{1} \cap E_{2} \cap \ldots \cap E_{n}\right)=P\left(C, E_{1}, E_{2}, \ldots E_{n}\right)=P(C, E)
\end{aligned}
$$

Just a notation

Chain rule:

$$
P(C, E)=P(C) P\left(E_{1} / C, E_{2}, \ldots E_{n}\right) P\left(E_{2} / C, E_{1}, E_{3}, \ldots, E_{n}\right) x \ldots x P\left(E_{n} / C, E_{1}, \ldots E_{n-1}\right)
$$

Multiple variables dependent on C

C - condition
E - evidence (event)

If $E_{1}, \ldots E_{n}$ are mutually independent and depend only on C then:

$$
P(C, E)=P(C) P\left(E_{1} \mid C\right) P\left(E_{2} \mid C\right) x \ldots x P\left(E_{n} \mid C\right)
$$

And from Bayes theorem:

$$
P(C \mid E)=P(C, E) / P(E)
$$

That gives you a formula of the probability that the unknown condition C was true given a set of known evidences E

Multi-valued random variables

Suppose A is not a Boolean variable but can take a value from a set of size greater than 2 - say, k values. Multi-valued random variable is defined as:

- $P\left(A=a_{i} \cap A=a_{j}\right)=0$ for $i \neq j$ (mutually exclusive)
- $P\left(A=a_{1}\right.$ or $A=a_{2}$ or \ldots or $\left.A=a_{k}\right)=1$

Theorem 5 becomes:
$P\left(A=a_{1}\right.$ or $A=a_{2}$ or $\left.\ldots A=a_{m}\right)=\sum_{\text {(from } i=1 \text { to } m)} P\left(A=a_{i}\right), m<=k$

Theorem 6 becomes:
$P\left(B \cap\left[A=a_{1}\right.\right.$ or $A=a_{2}$ or $\left.\left.\ldots A=a_{m}\right]\right)=\sum_{(\text {from } i=1 \text { to } m)} P\left(B \cap A_{i}\right)$

