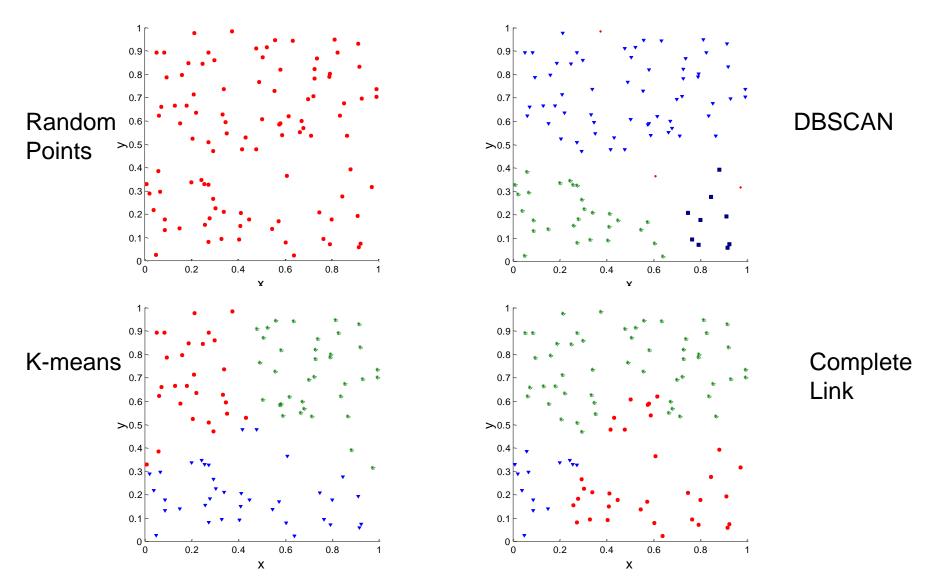
CLUSTERING EVALUATION

Lecture 05.03

Clustering Evaluation

- How do we evaluate the "goodness" of the resulting clusters?
- But "clustering lies in the eye of the beholder"!
- Then why do we want to evaluate them?
 - To avoid finding patterns in noise
 - To compare clusterings, or clustering algorithms
 - To compare against a "ground truth"

Clusters found in Random Data



Different Approaches to Cluster Validation

- 1. Determining the clustering tendency of a set of data, i.e., distinguishing whether non-random structure actually exists in the data.
- 2. Comparing the results of a cluster analysis to externally known results, e.g., to externally given class labels.
- 3. Evaluating how well the results of a cluster analysis fit the data *without* reference to external information.

- Use only the data

- 4. Comparing the results of two different sets of cluster analyses to determine which is better.
- 5. Determining the 'correct' number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to evaluate the entire clustering or just individual clusters.

Measures of Cluster Validity

- Numerical measures are classified into the following three types:
 - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
 - E.g., entropy, precision, recall
 - Internal Index: Used to measure the goodness of a clustering structure without reference to external information.
 - E.g., Sum of Squared Error (SSE)
 - Relative Index: Used to compare two different clusterings or clusters.
 - Often an external or internal index is used for this function, e.g., SSE or entropy
- Criterion is the general strategy and index is the numerical measure that implements the criterion.

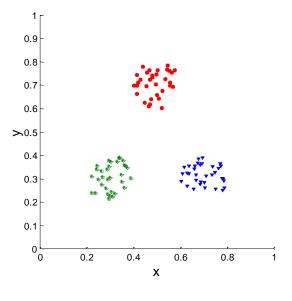
Measuring Cluster Validity Via Correlation

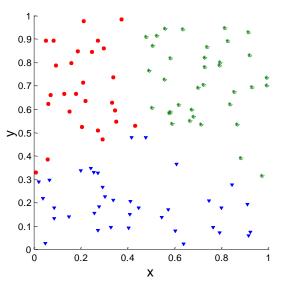
• Two matrices

- Similarity or Distance Matrix
 - One row and one column for each data point
 - An entry is the similarity or distance of the associated pair of points
- "Incidence" Matrix
 - One row and one column for each data point
 - An entry is 1 if the associated pair of points belong to the same cluster
 - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
 - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation (positive for similarity, negative for distance) indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

Measuring Cluster Validity Via Correlation

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

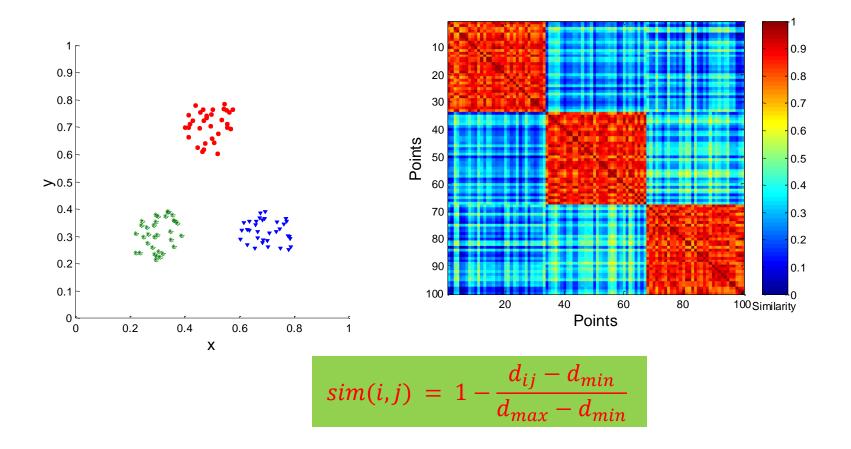




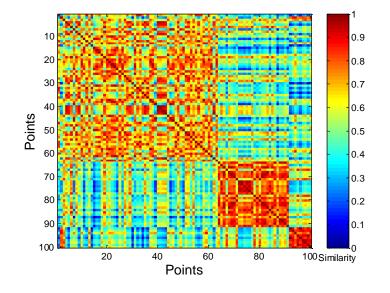
Corr = -0.5810

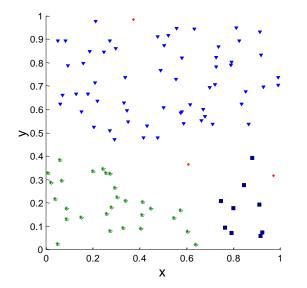
Corr = -0.9235

 Order the similarity matrix with respect to cluster labels and inspect visually.



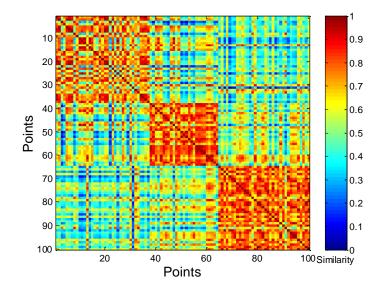
Clusters in random data are not so crisp

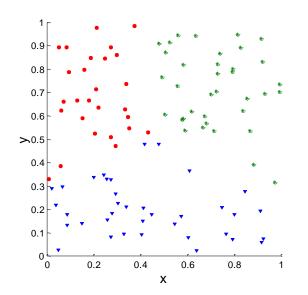




DBSCAN

Clusters in random data are not so crisp

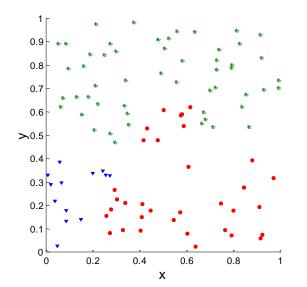




K-means

Clusters in random data are not so crisp





Complete Link

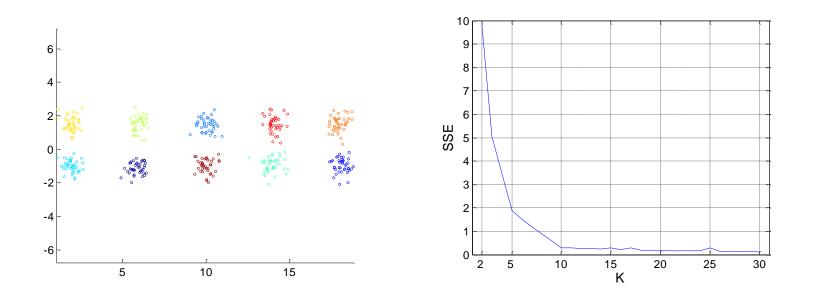


DBSCAN

- Clusters in more complicated figures are not well separated
- This technique can only be used for small datasets since it requires a quadratic computation

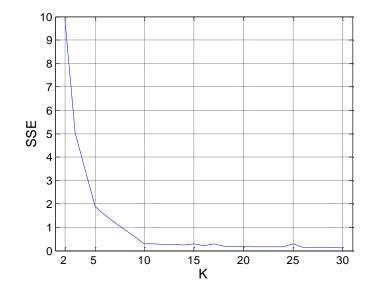
Internal Measures: SSE

- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters



Estimating the "right" number of clusters

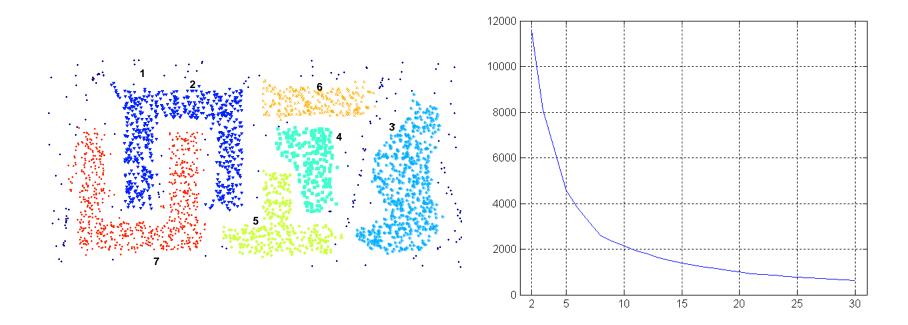
Typical approach: find a "knee" in an internal measure curve.



- Question: why not the k that minimizes the SSE?
- Desirable property: the clustering algorithm that does not require the number of clusters to be specified (e.g., DBSCAN)

Internal Measures: SSE

SSE curve for a more complicated data set



SSE of clusters found using K-means

Internal Measures: Cohesion and Separation

- Cluster Cohesion: Measures how closely related are objects in a cluster
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error
 - Cohesion is measured by the within cluster sum of squares (SSE)

$$WSS = \sum_{i} \sum_{x \in C_i} (x - c_i)^2$$
 We want this to be small

• Separation is measured by the between cluster sum of squares

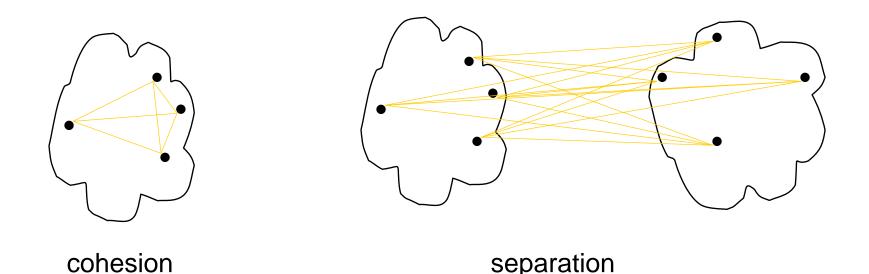
$$BSS = \sum m_i (c - c_i)^2$$

We want this to be large

• Where m_i is the size of cluster i

Internal Measures: Cohesion and Separation

- A proximity graph based approach can also be used for cohesion and separation.
 - Cluster cohesion is the sum of the length of all links within a cluster.
 - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.



Internal measures – caveats

- Internal measures have the problem that the clustering algorithm did not set out to optimize this measure, so it is will not necessarily do well with respect to the measure.
- An internal measure can also be used as an objective function for clustering

Framework for Cluster Validity

- Need a framework to interpret any measure.
 - For example, if our measure of evaluation has the value 10, is that good, fair, or poor?
- Statistics provide a framework for cluster validity
 - The more "non-random" a clustering result is, the more likely it represents valid structure in the data
 - Can compare the values of an index that result from random data or clusterings to those of a clustering result.
 - If the value of the index is unlikely, then the cluster results are valid
- For comparing the results of two different sets of cluster analyses, a framework is less necessary.
 - However, there is the question of whether the difference between two index values is significant

Statistical Framework for SSE

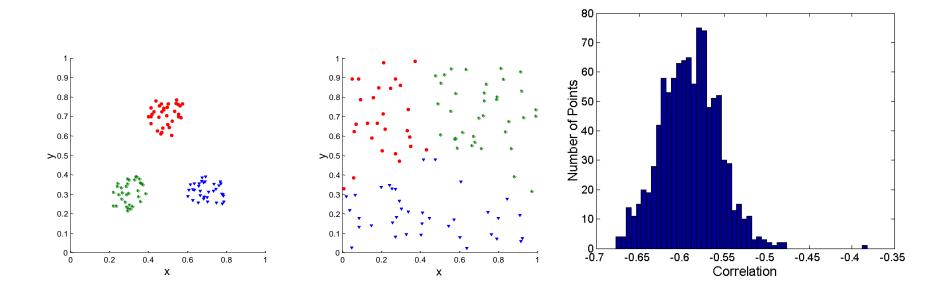
Example

- Compare SSE of 0.005 against three clusters in random data
- Histogram of SSE for three clusters in 500 random data sets of 100 random points distributed in the range 0.2 – 0.8 for x and y
 - Value 0.005 is very unlikely



Statistical Framework for Correlation

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.



Corr = -0.9235

Corr = -0.5810

Empirical p-value

- If we have a measurement v (e.g., the SSE value)
- ..and we have N measurements on random datasets
- ...the empirical p-value is the fraction of measurements in the random data that have value less or equal than value v (or greater or equal if we want to maximize)
 - i.e., the value in the random dataset is at least as good as that in the real data
- We usually require that $p-value \le 0.05$
- Hard question: what is the right notion of a random dataset?

External Measures for Clustering Validity

- Assume that the data is labeled with some class labels
 - E.g., documents are classified into topics, people classified according to their income, politicians classified according to the political party.
 - This is called the "ground truth"
- In this case we want the clusters to be homogeneous with respect to classes
 - Each cluster should contain elements of mostly one class
 - Each class should ideally be assigned to a single cluster
- This does not always make sense
 - Clustering is not the same as classification
 - ...but this is what people use most of the time

Confusion matrix

- n = number of points
- m_i = points in cluster i
- c_j = points in class j
- n_{ij} = points in cluster i coming from class j
- $p_{ij} = n_{ij}/m_i$ = probability of element from cluster i to be assigned in class j

	Class 1	Class 2	Class 3	
Cluster 1	<i>n</i> ₁₁	<i>n</i> ₁₂	<i>n</i> ₁₃	m_1
Cluster 2	<i>n</i> ₂₁	n ₂₂	n ₂₃	m_2
Cluster 3	<i>n</i> ₃₁	n ₃₂	<i>n</i> ₃₃	m_3
	<i>C</i> ₁	<i>C</i> ₂	<i>c</i> ₃	n

	Class 1	Class 2	Class 3	
Cluster 1	p_{11}	p_{12}	p_{13}	m_1
Cluster 2	p_{21}	p_{22}	p_{23}	<i>m</i> 2
Cluster 3	p_{31}	p_{32}	p_{33}	m_3
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	n

	Class 1	Class 2	Class 3	
Cluster 1	p_{11}	p_{12}	p_{13}	m_1
Cluster 2	p_{21}	p_{22}	p_{23}	m_2
Cluster 3	p_{31}	p_{32}	p_{33}	m_3
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	п

• Entropy:

Measures

• Of a cluster i: $e_i = -\sum_{j=1}^L p_{ij} \log p_{ij}$

Highest when uniform, zero when single class

• Of a clustering: $e = \sum_{i=1}^{K} \frac{m_i}{n} e_i$

• Purity:

- Of a cluster i: $p_i = \max_i p_{ij}$
- Of a clustering: $p(C) = \sum_{i=1}^{K} \frac{m_i}{n} p_i$

	Class 1	Class 2	Class 3	
Cluster 1	p_{11}	p_{12}	p_{13}	m_1
Cluster 2	p_{21}	p_{22}	p_{23}	m_2
Cluster 3	p_{31}	<i>p</i> ₃₂	p_{33}	<i>m</i> 3
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	n

• Precision:

Measures

• Of cluster i with respect to class j: $Prec(i, j) = p_{ij}$

• Recall:

• Of cluster i with respect to class j: $Rec(i,j) = \frac{n_{ij}}{c_i}$

• F-measure:

• Harmonic Mean of Precision and Recall: $F(i,j) = \frac{2 * Prec(i,j) * Rec(i,j)}{Prec(i,j) + Rec(i,j)}$

Measures

Precision/Recall for clusters and clusterings

- Assign to cluster *i* the class k_i such that $k_i = \arg \max_i n_{ij}$
- Precision:
 - Of cluster i: $Prec(i) = \frac{n_{ik_i}}{m_i}$
 - Of the clustering: $Prec(C) = \sum_{i} \frac{m_i}{n} Prec(i)$
- Recall:
 - Of cluster i: $Rec(i) = \frac{n_{ik_i}}{c_{k_i}}$

• Of the clustering: $Rec(C) = \sum_{i} \frac{m_i}{n} Rec(i)$

- F-measure:
 - Harmonic Mean of Precision and Recall

Precision (also called positive predictive value) is the fraction of relevant instances among all positive instances: n of majority class instances/total instances in a cluster

Recall (also known as sensitivity) is the fraction of relevant instances that were positively classified/the total amount of relevant instances – in this case the total number of instances of this class

	Class 1	Class 2	Class 3	
Cluster 1	<i>n</i> ₁₁	<i>n</i> ₁₂	<i>n</i> ₁₃	m_1
Cluster 2	<i>n</i> ₂₁	n ₂₂	n ₂₃	m_2
Cluster 3	<i>n</i> ₃₁	n ₃₂	<i>n</i> ₃₃	m_3
	<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	n

Good and bad clustering

	Class 1	Class 2	Class 3	
Cluster 1	2	3	85	90
Cluster 2	90	12	8	110
Cluster 3	8	85	7	100
	100	100	100	300

Purity: (0.94, 0.81, 0.85) – overall 0.86 Precision: (0.94, 0.81, 0.85) – overall 0.86 Recall: (0.85, 0.9, 0.85) – overall 0.87

	Class 1	Class 2	Class 3	
Cluster 1	20	35	35	90
Cluster 2	30	42	38	110
Cluster 3	38	35	27	100
	100	100	100	300

Purity: (0.38, 0.38, 0.38) – overall 0.38 Precision: (0.38, 0.38, 0.38) – overall 0.38 Recall: (0.35, 0.42, 0.38) – overall 0.39

Another clustering

	Class 1	Class 2	Class 3	
Cluster 1	0	0	35	35
Cluster 2	50	77	38	165
Cluster 3	38	35	27	100
	100	100	100	300

Cluster 1:

Purity: 1 Precision: 1 Recall: 0.35

Final Comment on Cluster Validity

- "The validation of clustering structures is the most difficult and frustrating part of cluster analysis.
- Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes