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Clustering Evaluation

• How do we evaluate the “goodness” of the resulting 
clusters?

• But “clustering lies in the eye of the beholder”! 

• Then why do we want to evaluate them?
• To avoid finding patterns in noise

• To compare clusterings, or clustering algorithms

• To compare against a “ground truth”



Clusters found in Random Data
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1. Determining the clustering tendency of a set of data, i.e., 

distinguishing whether non-random structure actually exists in the 

data. 

2. Comparing the results of a cluster analysis to externally known 

results, e.g., to externally given class labels.

3. Evaluating how well the results of a cluster analysis fit the data 

without reference to external information. 

- Use only the data

4. Comparing the results of two different sets of cluster analyses to 

determine which is better.

5. Determining the ‘correct’ number of clusters.

For 2, 3, and 4, we can further distinguish whether we want to 

evaluate the entire clustering or just individual clusters. 

Different Approaches to Cluster Validation



• Numerical measures are classified into the following three 

types:

• External Index: Used to measure the extent to which cluster labels 

match externally supplied class labels.
• E.g., entropy, precision, recall

• Internal Index: Used to measure the goodness of a clustering 

structure without reference to external information. 
• E.g., Sum of Squared Error (SSE)

• Relative Index: Used to compare two different clusterings or 

clusters. 
• Often an external or internal index is used for this function, e.g., SSE or 

entropy

• Criterion is the general strategy and index is the numerical measure that 

implements the criterion.

Measures of Cluster Validity



• Two matrices 
• Similarity or Distance Matrix

• One row and one column for each data point

• An entry is the similarity or distance of the associated pair of points

• “Incidence” Matrix

• One row and one column for each data point

• An entry is 1 if the associated pair of points belong to the same cluster

• An entry is 0 if the associated pair of points belongs to different clusters

• Compute the correlation between the two matrices
• Since the matrices are symmetric, only the correlation between 

n(n-1) / 2 entries needs to be calculated.

• High correlation (positive for similarity, negative for 
distance) indicates that points that belong to the same 
cluster are close to each other. 

• Not a good measure for some density or contiguity based 
clusters.

Measuring Cluster Validity Via Correlation



Measuring Cluster Validity Via Correlation

• Correlation of incidence and proximity matrices 

for the K-means clusterings of the following two 

data sets. 
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• Order the similarity matrix with respect to cluster 

labels and inspect visually. 

Using Similarity Matrix for Cluster Validation
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp

K-means
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Using Similarity Matrix for Cluster Validation

• Clusters in random data are not so crisp
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Using Similarity Matrix for Cluster Validation
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• Clusters in more complicated figures are not well separated

• This technique can only be used for small datasets since it requires a 

quadratic computation



• SSE is good for comparing two clusterings or two clusters 

(average SSE).

• Can also be used to estimate the number of clusters

Internal Measures: SSE
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Estimating the “right” number of clusters

• Typical approach: find a “knee” in an internal measure curve.

• Question: why not the k that minimizes the SSE?

• Desirable property: the clustering algorithm that does not 
require the number of clusters to be specified (e.g., DBSCAN)
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Internal Measures: SSE

• SSE curve for a more complicated data set
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• Cluster Cohesion: Measures how closely related 

are objects in a cluster

• Cluster Separation: Measure how distinct or well-

separated a cluster is from other clusters

• Example: Squared Error

• Cohesion is measured by the within cluster sum of squares (SSE)

• Separation is measured by the between cluster sum of squares

• Where mi is the size of cluster i 

Internal Measures: Cohesion and Separation
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• A proximity graph based approach can also be used for 

cohesion and separation.

• Cluster cohesion is the sum of the length of all links within a cluster.

• Cluster separation is the sum of the weights between nodes in the cluster 

and nodes outside the cluster.

Internal Measures: Cohesion and Separation

cohesion separation



Internal measures – caveats 

• Internal measures have the problem that the 

clustering algorithm did not set out to optimize 

this measure, so it is will not necessarily do well 

with respect to the measure.

• An internal measure can also be used as an 

objective function for clustering



• Need a framework to interpret any measure. 
• For example, if our measure of evaluation has the value 10, is that 

good, fair, or poor?

• Statistics provide a framework for cluster validity
• The more “non-random” a clustering result is, the more likely it 

represents valid structure in the data

• Can compare the values of an index that result from random data or 

clusterings to those of a clustering result.

• If the value of the index is unlikely, then the cluster results are valid

• For comparing the results of two different sets of cluster 

analyses, a framework is less necessary.
• However, there is the question of whether the difference between two 

index values is significant

Framework for Cluster Validity



• Example
• Compare SSE of 0.005 against three clusters in random data

• Histogram of SSE for three clusters in 500 random data sets of 

100 random points distributed in the range 0.2 – 0.8 for x and y

• Value 0.005 is very unlikely

Statistical Framework for SSE
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• Correlation of incidence and proximity matrices for the 

K-means clusterings of the following two data sets. 

Statistical Framework for Correlation
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Empirical p-value

• If we have a measurement v (e.g., the SSE value)

• ..and we have N measurements on random datasets

• …the empirical p-value is the fraction of 
measurements in the random data that have value 
less or equal than value v (or greater or equal if we 
want to maximize) 
• i.e., the value in the random dataset is at least as good as 

that in the real data

• We usually require that p-value ≤ 0.05

• Hard question: what is the right notion of a random 
dataset?



External Measures for Clustering Validity

• Assume that the data is labeled with some class 
labels
• E.g., documents are classified into topics, people classified 

according to their income, politicians classified according to 
the political party.

• This is called the “ground truth”

• In this case we want the clusters to be homogeneous
with respect to classes
• Each cluster should contain elements of mostly one class

• Each class should ideally be assigned to a single cluster

• This does not always make sense
• Clustering is not the same as classification

• …but this is what people use most of the time



Confusion matrix

• 𝑛 = number of points

• 𝑚𝑖 = points in cluster i

• 𝑐𝑗 = points in class j

• 𝑛𝑖𝑗= points in cluster i

coming from class j

• 𝑝𝑖𝑗 = 𝑛𝑖𝑗/𝑚𝑖= probability 

of element from cluster i

to be assigned in class j

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Entropy:

• Of a cluster i: 𝑒𝑖 = −σ𝑗=1
𝐿 𝑝𝑖𝑗 log 𝑝𝑖𝑗

• Highest when uniform, zero when single class

• Of a clustering: 𝑒 = σ𝑖=1
𝐾 𝑚𝑖

𝑛
𝑒𝑖

• Purity:

• Of a cluster i: 𝑝𝑖 = max
𝑗

𝑝𝑖𝑗

• Of a clustering: 𝑝(𝐶) = σ𝑖=1
𝐾 𝑚𝑖

𝑛
𝑝𝑖

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Precision:

• Of cluster i with respect to class j: 𝑃𝑟𝑒𝑐 𝑖, 𝑗 = 𝑝𝑖𝑗

• Recall:

• Of cluster i with respect to class j: 𝑅𝑒𝑐 𝑖, 𝑗 =
𝑛𝑖𝑗

𝑐𝑗

• F-measure:

• Harmonic Mean of Precision and Recall:

𝐹 𝑖, 𝑗 =
2 ∗ 𝑃𝑟𝑒𝑐 𝑖, 𝑗 ∗ 𝑅𝑒𝑐(𝑖, 𝑗)

𝑃𝑟𝑒𝑐 𝑖, 𝑗 + 𝑅𝑒𝑐(𝑖, 𝑗)

Class 1 Class 2 Class 3

Cluster 1 𝑝11 𝑝12 𝑝13 𝑚1

Cluster 2 𝑝21 𝑝22 𝑝23 𝑚2

Cluster 3 𝑝31 𝑝32 𝑝33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛



Measures

• Assign to cluster 𝑖 the class 𝑘𝑖 such that 𝑘𝑖 = argmax
𝑗

𝑛𝑖𝑗

• Precision:

• Of cluster i: 𝑃𝑟𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖
𝑚𝑖

• Of the clustering: 𝑃𝑟𝑒𝑐(𝐶) = σ𝑖
𝑚𝑖

𝑛
𝑃𝑟𝑒𝑐(𝑖)

• Recall:

• Of cluster i: 𝑅𝑒𝑐 𝑖 =
𝑛𝑖𝑘𝑖
𝑐𝑘𝑖

• Of the clustering: 𝑅𝑒𝑐 𝐶 = σ𝑖
𝑚𝑖

𝑛
𝑅𝑒𝑐(𝑖)

• F-measure:
• Harmonic Mean of Precision and Recall

Class 1 Class 2 Class 3

Cluster 1 𝑛11 𝑛12 𝑛13 𝑚1

Cluster 2 𝑛21 𝑛22 𝑛23 𝑚2

Cluster 3 𝑛31 𝑛32 𝑛33 𝑚3

𝑐1 𝑐2 𝑐3 𝑛

Precision/Recall for clusters and clusterings

Precision (also called positive predictive value) 

is the fraction of relevant instances among all 

positive instances: n of majority class 

instances/total instances in a cluster

Recall (also known as sensitivity) is the 

fraction of relevant instances that were 

positively classified/the total amount of 

relevant instances – in this case the total 

number of instances of this class



Good and bad clustering

Class 1 Class 2 Class 3

Cluster 1 20 35 35 90

Cluster 2 30 42 38 110

Cluster 3 38 35 27 100

100 100 100 300

Class 1 Class 2 Class 3

Cluster 1 2 3 85 90

Cluster 2 90 12 8 110

Cluster 3 8 85 7 100

100 100 100 300

Purity: (0.94, 0.81, 0.85) 

– overall 0.86

Precision: (0.94, 0.81, 0.85) 

– overall 0.86

Recall: (0.85, 0.9, 0.85)  

- overall 0.87 

Purity: (0.38, 0.38, 0.38) 

– overall 0.38

Precision: (0.38, 0.38, 0.38) 

– overall 0.38

Recall: (0.35, 0.42, 0.38) 

– overall 0.39 



Another clustering

Class 1 Class 2 Class 3

Cluster 1 0 0 35 35

Cluster 2 50 77 38 165

Cluster 3 38 35 27 100

100 100 100 300

Cluster 1: 

Purity: 1

Precision: 1

Recall: 0.35  



“The validation of clustering structures is the most 
difficult and frustrating part of cluster analysis. 

Without a strong effort in this direction, cluster 
analysis will remain a black art accessible only to 
those true believers who have experience and 
great courage.”

Algorithms for Clustering Data, Jain and Dubes

Final Comment on Cluster Validity


