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Related Posts

individual datapoints. With a handful of training data items that were paired with 
their respective classes, you learned a model, which we can now use to classify 
future data items. We called this supervised learning because the learning was 

Let's now imagine that we do not possess those labels by which we can learn the 

collect. Just imagine the cost if the only way to obtain millions of labels will be to ask 

some pattern within the data itself. That is, let the data describe itself. This is what 
we will do in this chapter, where we consider the challenge of a question and answer 
website. When a user is browsing our site, perhaps because they were searching for 

answer. If the presented answers are not what they were looking for, the website 
should present (at least) the related answers so that they can quickly see what other 
answers are available and hopefully stay on our site.

The naïve approach will be to simply take the post, calculate its similarity to all  
other posts and display the top n

related posts.
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We will achieve this goal in this chapter using clustering. This is a method of 
arranging items so that similar items are in one cluster and dissimilar items are in 

something on which we can calculate similarity. With such a similarity measurement, 
we will then proceed to investigate how we can leverage that to quickly arrive at a 
cluster that contains similar posts. Once there, we will only have to check out those 
documents that also belong to that cluster. To achieve this, we will introduce you to 
the marvelous SciKit library, which comes with diverse machine learning methods 
that we will also use in the following chapters.

Measuring the relatedness of posts
From the machine learning point of view, raw text is useless. Only if we manage to 
transform it into meaningful numbers, can we then feed it into our machine learning 
algorithms, such as clustering. This is true for more mundane operations on text such 
as similarity measurement.

How not to do it
One text similarity measure is the Levenshtein distance, which also goes by the name 
Edit Distance. Let's say we have two words, "machine" and "mchiene". The similarity 
between them can be expressed as the minimum set of edits that are necessary to turn 
one word into the other. In this case, the edit distance will be 2, as we have to add an 

Looking at our posts, we could cheat by treating whole words as characters and 
performing the edit distance calculation on the word level. Let's say we have two 
posts (let's concentrate on the following title, for simplicity's sake) called "How 
to format my hard disk" and "Hard disk format problems", we will need an edit 
distance of 5 because of removing "how", "to", "format", "my" and then adding 
"format" and "problems" in the end. Thus, one could express the difference between 
two posts as the number of words that have to be added or deleted so that one text 
morphs into the other. Although we could speed up the overall approach quite a bit, 
the time complexity remains the same.

But even if it would have been fast enough, there is another problem. In the earlier 

adding it. So, our distance seems to be not robust enough to take word reordering 
into account.
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How to do it
More robust than edit distance is the so-called bag of word approach. It totally 
ignores the order of words and simply uses word counts as their basis. For each 
word in the post, its occurrence is counted and noted in a vector. Not surprisingly, 
this step is also called vectorization. The vector is typically huge as it contains as 
many elements as words occur in the whole dataset. Take, for instance, two example 
posts with the following word counts:

Word Occurrences in post 1 Occurrences in post 2
disk 1 1
format 1 1
how 1 0
hard 1 1
my 1 0
problems 0 1
to 1 0

The columns Occurrences in post 1 and Occurrences in post 2 can now be treated as 
simple vectors. We can simply calculate the Euclidean distance between the vectors 
of all posts and take the nearest one (too slow, as we have found out earlier). And as 
such, we can use them later as our feature vectors in the clustering steps according to 
the following procedure:

1. Extract salient features from each post and store it as a vector per post.
2. Then compute clustering on the vectors.
3. Determine the cluster for the post in question.
4. From this cluster, fetch a handful of posts having a different similarity to the 

post in question. This will increase diversity.

But there is some more work to be done before we get there. Before we can do that 
work, we need some data to work on.
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Preprocessing – similarity measured as a 
similar number of common words
As we have seen earlier, the bag of word approach is both fast and robust. It is, 
though, not without challenges. Let's dive directly into them.

Converting raw text into a bag of words
We do not have to write custom code for counting words and representing those 
counts as a vector. SciKit's CountVectorizer
but also has a very convenient interface. SciKit's functions and classes are imported 
via the sklearn package:

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> vectorizer = CountVectorizer(min_df=1)

The min_df parameter determines how CountVectorizer treats seldom words 
(minimum document frequency). If it is set to an integer, all words occurring less 
than that value will be dropped. If it is a fraction, all words that occur in less than 
that fraction of the overall dataset will be dropped. The max_df parameter works 
in a similar manner. If we print the instance, we see what other parameters SciKit 
provides together with their default values:

>>> print(vectorizer) 
CountVectorizer(analyzer='word', binary=False, charset=None,

        charset_error=None, decode_error='strict',

        dtype=<class 'numpy.int64'>, encoding='utf-8',  
input='content',

        lowercase=True, max_df=1.0, max_features=None, min_df=1,

        ngram_range=(1, 1), preprocessor=None, stop_words=None,

        strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',

        tokenizer=None, vocabulary=None)

We see that, as expected, the counting is done at word level (analyzer=word) and 
words are determined by the regular expression pattern token_pattern. It will, 
for example, tokenize "cross-validated" into "cross" and "validated". Let's ignore the 
other parameters for now and consider the following two example subject lines:

>>> content = ["How to format my hard disk", " Hard disk format  
problems "]

www.it-ebooks.info



[ 55 ]

We can now put this list of subject lines into the fit_transform() function of our 
vectorizer, which does all the hard vectorization work.

>>> X = vectorizer.fit_transform(content)

>>> vectorizer.get_feature_names() 
[u'disk', u'format', u'hard', u'how', u'my', u'problems', u'to']

The vectorizer has detected seven words for which we can fetch the counts individually:

>>> print(X.toarray().transpose())

[[1 1]

 [1 1]

 [1 1]

 [1 0]

 [1 0]

 [0 1]

 [1 0]]

the second contains all but "how", "my", and "to". In fact, these are exactly the same 
columns as we have seen in the preceding table. From X, we can extract a feature 
vector that we will use to compare two documents with each other.

peculiarities we have to account for. So let's pick a random post, for which we then 
create the count vector. We will then compare its distance to all the count vectors and 
fetch the post with the smallest one.

Counting words
Let's play with the toy dataset consisting of the following posts:

Post filename Post content
01.txt This is a toy post about machine learning. Actually, it contains not much 

interesting stuff.
02.txt Imaging databases can get huge.
03.txt Most imaging databases save images permanently.
04.txt Imaging databases store images.
05.txt Imaging databases store images. Imaging databases store images. 

Imaging databases store images.
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"imaging databases".

Assuming that the posts are located in the directory DIR, we can feed 
CountVectorizer with it:

>>> posts = [open(os.path.join(DIR, f)).read() for f in  
os.listdir(DIR)]

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> vectorizer = CountVectorizer(min_df=1)

We have to notify the vectorizer about the full dataset so that it knows upfront what 
words are to be expected:

>>> X_train = vectorizer.fit_transform(posts)

>>> num_samples, num_features = X_train.shape

>>> print("#samples: %d, #features: %d" % (num_samples,  
num_features))

#samples: 5, #features: 25

words that have been tokenized will be counted:

>>> print(vectorizer.get_feature_names()) 
[u'about', u'actually', u'capabilities', u'contains', u'data',  
u'databases', u'images', u'imaging', u'interesting', u'is', u'it',  
u'learning', u'machine', u'most', u'much', u'not', u'permanently',  
u'post', u'provide', u'save', u'storage', u'store', u'stuff',  
u'this', u'toy']

Now we can vectorize our new post.

>>> new_post = "imaging databases"

>>> new_post_vec = vectorizer.transform([new_post])

Note that the count vectors returned by the transform method are sparse. That is, 
each vector does not store one count value for each word, as most of those counts 
will be zero (the post does not contain the word). Instead, it uses the more memory-

coo_matrix (for "COOrdinate"). Our new post, for instance, 
actually contains only two elements:

>>> print(new_post_vec)

  (0, 7)  1

  (0, 5)  1
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Via its toarray() member, we can once again access the full ndarray:

>>> print(new_post_vec.toarray())

[[0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]

We need to use the full array, if we want to use it as a vector for similarity 
calculations. For the similarity measurement (the naïve one), we calculate the 
Euclidean distance between the count vectors of the new post and all the old posts:

>>> import scipy as sp

>>> def dist_raw(v1, v2):

...     delta = v1-v2

...     return sp.linalg.norm(delta.toarray())

The norm() function calculates the Euclidean norm (shortest distance). This is just one 

Just take a look at the paper  in The Python 
Papers Source Codes, in which Maurice Ling nicely presents 35 different ones.

With dist_raw, we just need to iterate over all the posts and remember the  
nearest one:

>>> import sys

>>> best_doc = None

>>> best_dist = sys.maxint

>>> best_i = None

>>> for i, post in enumerate(num_samples):

...     if post == new_post:

...         continue

...     post_vec = X_train.getrow(i)

...     d = dist_raw(post_vec, new_post_vec)

...     print("=== Post %i with dist=%.2f: %s"%(i, d, post))

...     if d<best_dist:

...         best_dist = d

...         best_i = i

>>> print("Best post is %i with dist=%.2f"%(best_i, best_dist))

=== Post 0 with dist=4.00: This is a toy post about machine learning.  
Actually, it contains not much interesting stuff.

=== Post 1 with dist=1.73: Imaging databases provide storage  
capabilities.
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=== Post 2 with dist=2.00: Most imaging databases save images  
permanently.

=== Post 3 with dist=1.41: Imaging databases store data.

=== Post 4 with dist=5.10: Imaging databases store data. Imaging  
databases store data. Imaging databases store data.

Best post is 3 with dist=1.41

Congratulations, we

with the new post. We can also understand that Post 1 is very similar to the new 
post, but not the winner, as it contains one word more than Post 3, which is not 
contained in the new post.

Looking at Post 3 and Post 4, however, the picture is not so clear any more. Post 4 is 
the same as Post 3 duplicated three times. So, it should also be of the same similarity 
to the new post as Post 3.

Printing the corresponding feature vectors explains why:

>>> print(X_train.getrow(3).toarray())

[[0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]]

>>> print(X_train.getrow(4).toarray())

[[0 0 0 0 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0]]

Obviously, using only the counts of the raw words is too simple. We will have to 
normalize them to get vectors of unit length.

Normalizing word count vectors
We will have to extend dist_raw to calculate the vector distance not on the raw 
vectors but on the normalized instead:

>>> def dist_norm(v1, v2):

...    v1_normalized = v1/sp.linalg.norm(v1.toarray())

...    v2_normalized = v2/sp.linalg.norm(v2.toarray())

...    delta = v1_normalized - v2_normalized

...    return sp.linalg.norm(delta.toarray())

This leads to the following similarity measurement:

=== Post 0 with dist=1.41: This is a toy post about machine learning.  
Actually, it contains not much interesting stuff.

=== Post 1 with dist=0.86: Imaging databases provide storage  
capabilities.
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=== Post 2 with dist=0.92: Most imaging databases save images  
permanently.

=== Post 3 with dist=0.77: Imaging databases store data.

=== Post 4 with dist=0.77: Imaging databases store data. Imaging  
databases store data. Imaging databases store data.

Best post is 3 with dist=0.77

This looks a bit better now. Post 3 and Post 4 are calculated as being equally similar. 
One could argue whether that much repetition would be a delight to the reader, but 
from the point of counting the words in the posts this seems to be right.

Removing less important words
Let's have another look at Post 2. Of its words that are not in the new post, we have 
"most", "save", "images", and "permanently". They are actually quite different in the 
overall importance to the post. Words such as "most" appear very often in all sorts of 
different contexts and are called stop words. They do not carry as much information 
and thus should not be weighed as much as words such as "images", which doesn't 
occur often in different contexts. The best option would be to remove all the words 
that are so frequent that they do not help to distinguish between different texts. 
These words are called stop words.

As this is such a common step in text processing, there is a simple parameter in 
CountVectorizer to achieve that:

>>> vectorizer = CountVectorizer(min_df=1, stop_words='english')

If you have a clear picture of what kind of stop words you would want to remove, 
you can also pass a list of them. Setting stop_words to english will use a set of  

get_stop_words():

>>> sorted(vectorizer.get_stop_words())[0:20]

['a', 'about', 'above', 'across', 'after', 'afterwards', 'again',  
'against', 'all', 'almost', 'alone', 'along', 'already', 'also',  
'although', 'always', 'am', 'among', 'amongst', 'amoungst']

The new word list is seven words lighter:

[u'actually', u'capabilities', u'contains', u'data', u'databases',  
u'images', u'imaging', u'interesting', u'learning', u'machine',  
u'permanently', u'post', u'provide', u'save', u'storage', u'store',  
u'stuff', u'toy']
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Without stop words, we arrive at the following similarity measurement:

=== Post 0 with dist=1.41: This is a toy post about machine learning.  
Actually, it contains not much interesting stuff.

=== Post 1 with dist=0.86: Imaging databases provide storage  
capabilities.

=== Post 2 with dist=0.86: Most imaging databases save images  
permanently.

=== Post 3 with dist=0.77: Imaging databases store data.

=== Post 4 with dist=0.77: Imaging databases store data. Imaging  
databases store data. Imaging databases store data.

Best post is 3 with dist=0.77

Post 2 is now on par with Post 1. It has, however, changed not much overall since 
our posts are kept short for demonstration purposes. It will become vital when we 
look at real-world data.

Stemming
One thing is still missing. We count similar words in different variants as different 
words. Post 2, for instance, contains "imaging" and "images". It will make sense to 
count them together. After all, it is the same concept they are referring to.

contain a stemmer by default. With the  (NLTK), we can 
download a free software toolkit, which provides a stemmer that we can easily plug 
into CountVectorizer.

Installing and using NLTK
How to install NLTK on your operating system is described in detail at http://
nltk.org/install.html
3, which means that also pip install will not work. We can, however, download the 
package from http://www.nltk.org/nltk3-alpha/ and install it manually after 
uncompressing using Python's setup.py install.

To check whether your installation was successful, open a Python interpreter  
and type:

>>> import nltk
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Python 3 Text 
, , . To 

play a little bit with a stemmer, you can visit the web page http://
text-processing.com/demo/stem/.

NLTK comes with different stemmers. This is necessary, because every language has 
a different set of rules for stemming. For English, we can take SnowballStemmer.

>>> import nltk.stem

>>> s = nltk.stem.SnowballStemmer('english')

>>> s.stem("graphics")

u'graphic'

>>> s.stem("imaging")

u'imag'

>>> s.stem("image")

u'imag'

>>> s.stem("imagination")

u'imagin'

>>> s.stem("imagine")

u'imagin'

Note that stemming does not necessarily have to result in 
valid English words.

It also works with verbs:

>>> s.stem("buys")

u'buy'

>>> s.stem("buying")

u'buy'

This means, it works most of the time:

>>> s.stem("bought")

u'bought'
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Extending the vectorizer with NLTK's stemmer
We need to stem the posts before we feed them into CountVectorizer. The class 
provides several hooks with which we can customize the stage's preprocessing 
and tokenization. The preprocessor and tokenizer can be set as parameters in the 
constructor. We do not want to place the stemmer into any of them, because we 
will then have to do the tokenization and normalization by ourselves. Instead, we 
overwrite the build_analyzer method:

>>> import nltk.stem

>>> english_stemmer = nltk.stem.SnowballStemmer('english'))

>>> class StemmedCountVectorizer(CountVectorizer):

...     def build_analyzer(self):

...         analyzer = super(StemmedCountVectorizer,  
self).build_analyzer()

...         return lambda doc: (english_stemmer.stem(w) for w in  
analyzer(doc))

>>> vectorizer = StemmedCountVectorizer(min_df=1,  
stop_words='english')

This will do the following process for each post:

1.  
(done in the parent class).

2. Extracting all individual words in the tokenization step (done in the  
parent class).

3. This concludes with converting each word into its stemmed version.

As a result, we now have one feature less, because "images" and "imaging" collapsed 
to one. Now, the set of feature names is as follows:

[u'actual', u'capabl', u'contain', u'data', u'databas', u'imag',  
u'interest', u'learn', u'machin', u'perman', u'post', u'provid',  
u'save', u'storag', u'store', u'stuff', u'toy']

Running our new stemmed vectorizer over our posts, we see that collapsing 
"imaging" and "images", revealed that actually Post 2 is the most similar post to our 
new post, as it contains the concept "imag" twice:

=== Post 0 with dist=1.41: This is a toy post about machine learning.  
Actually, it contains not much interesting stuff.

=== Post 1 with dist=0.86: Imaging databases provide storage  
capabilities.
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=== Post 2 with dist=0.63: Most imaging databases save images  
permanently.

=== Post 3 with dist=0.77: Imaging databases store data.

=== Post 4 with dist=0.77: Imaging databases store data. Imaging  
databases store data. Imaging databases store data.

Best post is 2 with dist=0.63

Stop words on steroids
Now that we have a reasonable way to extract a compact vector from a noisy textual 
post, let's step back for a while to think about what the feature values actually mean.

The feature values simply count occurrences of terms in a post. We silently assumed 
that higher values for a term also mean that the term is of greater importance to the 
given post. But what about, for instance, the word "subject", which naturally occurs 

CountVectorizer to remove it 
as well by means of its max_df parameter. We can, for instance, set it to 0.9 so that 
all words that occur in more than 90 percent of all posts will always be ignored. 

willing to set max_df
problem that some terms are just more discriminative than others.

This can only be solved by counting term frequencies for every post and in addition 
discount those that appear in many posts. In other words, we want a high value for a 
given term in a given value, if that term occurs often in that particular post and very 
seldom anywhere else.

This is exactly what term frequency – inverse document frequency (TF-IDF) 
does. TF stands for the counting part, while IDF factors in the discounting. A naïve 
implementation will look like this:

>>> import scipy as sp

>>> def tfidf(term, doc, corpus):

...     tf = doc.count(term) / len(doc)

...     num_docs_with_term = len([d for d in corpus if term in d])

...     idf = sp.log(len(corpus) / num_docs_with_term)

...     return tf * idf

 did not simply count the terms, but also normalize the counts by the 
document length. This way, longer documents do not have an unfair advantage over 
shorter ones.
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For the following documents, D, consisting of three already tokenized documents,  
we can see how the terms are treated differently, although all appear equally often 
per document:

>>> a, abb, abc = ["a"], ["a", "b", "b"], ["a", "b", "c"]

>>> D = [a, abb, abc]

>>> print(tfidf("a", a, D))

0.0

>>> print(tfidf("a", abb, D))

0.0

>>> print(tfidf("a", abc, D))

0.0

>>> print(tfidf("b", abb, D))

0.270310072072

>>> print(tfidf("a", abc, D))

0.0

>>> print(tfidf("b", abc, D))

0.135155036036

>>> print(tfidf("c", abc, D))

0.366204096223

We see that a carries no meaning for any document since it is contained everywhere. 
The b term is more important for the document abb than for abc as it occurs there twice.

In reality, there are more corner cases to handle than the preceding example does. 
Thanks to SciKit, we don't have to think of them as they are already nicely packaged 
in TfidfVectorizer, which is inherited from CountVectorizer. Sure enough, we 
don't want to miss our stemmer:

>>> from sklearn.feature_extraction.text import TfidfVectorizer

>>> class StemmedTfidfVectorizer(TfidfVectorizer):

...     def build_analyzer(self):

...         analyzer = super(TfidfVectorizer,

                             self).build_analyzer()

...         return lambda doc: (

                english_stemmer.stem(w) for w in analyzer(doc))

>>> vectorizer = StemmedTfidfVectorizer(min_df=1,

                    stop_words='english', decode_error='ignore')
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The resulting document vectors will not contain counts any more. Instead they will 
contain the individual TF-IDF values per term.

Our achievements and goals
Our current text pre-processing phase includes the following steps:

1. Firstly, tokenizing the text.
2. This is followed by throwing away words that occur way too often to be of 

any help in detecting relevant posts.
3. Throwing away words that occur way so seldom so that there is only little 

chance that they occur in future posts.
4. Counting the remaining words.
5. Finally, calculating TF-IDF values from the counts, considering the whole 

text corpus.

Again, we can congratulate ourselves. With this process, we are able to convert a 
bunch of noisy text into a concise representation of feature values.

But, as simple and powerful the bag of words approach with its extensions is, it has 
some drawbacks, which we should be aware of:

• It does not cover word relations: With the aforementioned vectorization 
approach, the text "Car hits wall" and "Wall hits car" will both have the  
same feature vector.

• It does not capture negations correctly: For instance, the text "I will eat 
ice cream" and "I will not eat ice cream" will look very similar by means of 
their feature vectors although they contain quite the opposite meaning. This 
problem, however, can be easily changed by not only counting individual 
words, also called "unigrams", but instead also considering bigrams (pairs of 
words) or trigrams (three words in a row).

• It totally fails with misspelled words: Although it is clear to the human 
beings among us readers that "database" and "databas" convey the same 
meaning, our approach will treat them as totally different words.

For brevity's sake, let's nevertheless stick with the current approach, which we can 
clusters from.
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Clustering
Finally, we 
Not surprisingly, there are many ways to group them together. Most clustering 

Flat clustering divides the posts into a set of clusters without relating the clusters to 
each other. The goal is simply to come up with a partitioning such that all posts in 
one cluster are most similar to each other while being dissimilar from the posts in all 

In hierarchical clustering, the
Instead, hierarchical clustering creates a hierarchy of clusters. While similar posts 
are grouped into one cluster, similar clusters are again grouped into one . 
This is done recursively, until only one cluster is left that contains everything. In 
this hierarchy, one can then choose the desired number of clusters after the fact. 

SciKit provides a wide range of clustering approaches in the sklearn.cluster 
 

them at http://scikit-learn.org/dev/modules/clustering.html.

bit with the desired number of clusters.

K-means
k-means is the
the desired number of clusters, num_clusters, it maintains that number of so-called 
cluster centroids. Initially, it will pick any num_clusters posts and set the centroids 
to their feature vector. Then it will go through all other posts and assign them the 
nearest centroid as their current cluster. Following this, it will move each centroid 
into the middle of all the vectors of that particular class. This changes, of course, the 
cluster assignment. Some posts are now nearer to another cluster. So it will update 
the assignments for those changed posts. This is done as long as the centroids move 
considerably. After some iterations, the movements will fall below a threshold and 
we consider clustering to be converged.
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Let's play this through with a toy example of posts containing only two words. Each 
point in the following chart represents one document:
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After running one iteration of K-means, that is, taking any two vectors as starting 
points, assigning the labels to the rest and updating the cluster centers to now be the 
center point of all points in that cluster, we get the following clustering:
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Because the cluster centers moved, we have to reassign the cluster labels and 
recalculate the cluster centers. After iteration 2, we get the following clustering:

The arrows
example, the cluster centers don't move noticeably any more (SciKit's tolerance 
threshold is 0.0001 by default).

After the clustering has settled, we just need to note down the cluster centers and 
their identity. Each new document that comes in, we then have to vectorize and 
compare against all cluster centers. The cluster center with the smallest distance to 
our new post vector belongs to the cluster we will assign to the new post.
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Getting test data to evaluate our ideas on
In order to 
dataset that resembles the data we are expecting in the future so that we can test 
our approach. For our purpose, we need documents about technical topics that are 
already grouped together so that we can check whether our algorithm works as 
expected when we apply it later to the posts we hope to receive.

One standard dataset in machine learning is the 20newsgroup dataset, which 
contains 18,826 posts from 20 different newsgroups. Among the groups' topics are 
technical ones such as comp.sys.mac.hardware or sci.crypt, as well as more 
politics- and religion-related ones such as talk.politics.guns or soc.religion.
christian. We will restrict ourselves to the technical groups. If we assume each 

posts works.

The dataset can be downloaded from http://people.csail.mit.edu/
jrennie/20Newsgroups. Much more comfortable, however, is to download it 
from MLComp at http://mlcomp.org/datasets/379 (free registration required). 
SciKit already contains custom loaders for that dataset and rewards you with very 
convenient data loading options.

dataset-379-20news-18828_WJQIG.zip, 
which we have to unzip to get the directory 379, which contains the datasets. We 
also have to notify SciKit about the path containing that data directory. It contains 

test, train, and raw. The test and train 
directories split the whole dataset into 60 percent of training and 40 percent of testing 
posts. If you go this route, then you either need to set the environment variable 
MLCOMP_DATASETS_HOME or you specify the path directly with the mlcomp_root 
parameter when loading the dataset.

http://mlcomp.org is a website for comparing machine learning 

right dataset to tune your machine learning program, and exploring 
how other people use a particular dataset. For instance, you can see 
how well other people's algorithms performed on particular datasets 
and compare against them.
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For convenience, the sklearn.datasets module also contains the 
fetch_20newsgroups function, which automatically downloads the  
data behind the scenes:

>>> import sklearn.datasets

>>> all_data = sklearn.datasets.fetch_20newsgroups(subset='all')

>>> print(len(all_data.filenames))

18846

>>> print(all_data.target_names)

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',  
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',  
'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles',  
'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt',  
'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian',  
'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc',  
'talk.religion.misc']

We can choose between training and test sets:

>>> train_data = sklearn.datasets.fetch_20newsgroups(subset='train',  
categories=groups)

>>> print(len(train_data.filenames))

11314

>>> test_data = sklearn.datasets.fetch_20newsgroups(subset='test')

>>> print(len(test_data.filenames))

7532

For simplicity's sake, we will restrict ourselves to only some newsgroups so  
that the overall experimentation cycle is shorter. We can achieve this with the 
categories parameter:

>>> groups = ['comp.graphics', 'comp.os.ms-windows.misc',  
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',  
'comp.windows.x', 'sci.space']

>>> train_data = sklearn.datasets.fetch_20newsgroups(subset='train',  
categories=groups)

>>> print(len(train_data.filenames))

3529

>>> test_data = sklearn.datasets.fetch_20newsgroups(subset='test',  
categories=groups)

>>> print(len(test_data.filenames))

2349
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Clustering posts
would have already noticed one thing—real data is noisy. The newsgroup 

dataset is no exception. It even contains invalid characters that will result in 
UnicodeDecodeError.

We have to tell the vectorizer to ignore them:

>>> vectorizer = StemmedTfidfVectorizer(min_df=10, max_df=0.5,

...              stop_words='english', decode_error='ignore')

>>> vectorized = vectorizer.fit_transform(train_data.data)

>>> num_samples, num_features = vectorized.shape

>>> print("#samples: %d, #features: %d" % (num_samples,  
num_features))

#samples: 3529, #features: 4712

We now have a pool of 3,529 posts and extracted for each of them a feature vector  

to 50 for this chapter and hope you are curious enough to try out different values as 
an exercise.

>>> num_clusters = 50

>>> from sklearn.cluster import KMeans

>>> km = KMeans(n_clusters=num_clusters, init='random', n_init=1,

verbose=1, random_state=3)

>>> km.fit(vectorized)

That's it. We provided a random state just so that you can get the same results. In 

information out of members of km
a corresponding integer label in km.labels_:

>>> print(km.labels_)

[48 23 31 ...,  6  2 22]

>>> print(km.labels_.shape)

3529

The cluster centers can be accessed via km.cluster_centers_.

In the next section, we will see how we can assign a cluster to a newly arriving post 
using km.predict.
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Solving our initial challenge
We will now put everything together and demonstrate our system for the following 
new post that we assign to the new_post variable:

 
its label:

>>> new_post_vec = vectorizer.transform([new_post])

>>> new_post_label = km.predict(new_post_vec)[0]

Now that we have the clustering, we do not need to compare new_post_vec to all 
post vectors. Instead, we can focus only on the posts of the same cluster. Let's fetch 
their indices in the original data set:

>>> similar_indices = (km.labels_==new_post_label).nonzero()[0]

The comparison in the bracket results in a Boolean array, and nonzero converts that 
array into a smaller array containing the indices of the True elements.

Using similar_indices, we then simply have to build a list of posts together with 
their similarity scores:

>>> similar = []

>>> for i in similar_indices:

...    dist = sp.linalg.norm((new_post_vec -  
vectorized[i]).toarray())

...    similar.append((dist, dataset.data[i]))

>>> similar = sorted(similar)

>>> print(len(similar))

131
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We found 131 posts in the cluster of our post. To give the user a quick idea of what 
kind of similar posts are available, we can now present the most similar post (show_
at_1), and two less similar but still related ones – all from the same cluster.

>>> show_at_1 = similar[0]

>>> show_at_2 = similar[int(len(similar)/10)]

>>> show_at_3 = similar[int(len(similar)/2)]

The following table shows the posts together with their similarity values:

Position Similarity Excerpt from post
1 1.038 BOOT PROBLEM with IDE controller

Hi,
I've got a Multi I/O card (IDE controller + serial/parallel interface) 

80AT connected to it. I was able to format the hard disk, but I 
could not boot from it. I can boot from drive A: (which disk drive 
does not matter) but if I remove the disk from drive A and press 
the reset switch, the LED of drive A: continues to glow, and the 
hard disk is not accessed at all. I guess this must be a problem of 
either the Multi I/o card or floppy disk drive settings (jumper 

reason for it. […]
2 1.150 Booting from B drive

I have a 5 1/4" drive as drive A. How can I make the system boot 

to boot: from either A or B, checking them in order for a bootable 
disk. But: if I have to switch cables around and simply switch the 
drives so that: it can't boot 5 1/4" disks, that's OK. Also, boot_b 
won't do the trick for me. […]
 […]

3 1.280 IBM PS/1 vs TEAC FD
Hello, I already tried our national news group without success. I 
tried to replace a friend s original IBM floppy disk in his PS/1-PC 
with a normal TEAC drive. I already identified the power supply 
on pins 3 (5V) and 6 (12V), shorted pin 6 (5.25"/3.5" switch) and 
inserted pullup resistors (2K2) on pins 8, 26, 28, 30, and 34. The 
computer doesn't complain about a missing FD, but the FD s light 
stays on all the time. The drive spins up o.k. when I insert a disk, 
but I can't access it. The TEAC works fine in a normal PC. Are 

 […]

www.it-ebooks.info



[ ]

It is interesting
contains all the salient words from our new post. The second also revolves around 

is neither about hard disks, nor about booting problems. Still, of all the posts, we 
would say that they belong to the same domain as the new post.

Another look at noise
We should not expect a perfect clustering in the sense that posts from the same 
newsgroup (for example, comp.graphics) are also clustered together. An example 
will give us a quick impression of the noise that we have to expect. For the sake of 
simplicity, we will focus on one of the shorter posts:

>>> post_group = zip(train_data.data, train_data.target)

>>> all = [(len(post[0]), post[0], train_data.target_names[post[1]])  
for post in post_group]

>>> graphics = sorted([post for post in all if  
post[2]=='comp.graphics'])

>>> print(graphics[5])

(245, 'From: SITUNAYA@IBM3090.BHAM.AC.UK\nSubject:  
test....(sorry)\nOrganization: The University of Birmingham, United  
Kingdom\nLines: 1\nNNTP-Posting-Host: ibm3090.bham.ac.uk<…snip…>',  
'comp.graphics')

For this post, there is no real indication that it belongs to comp.graphics considering 
only the wording that is left after the preprocessing step:

>>> noise_post = graphics[5][1]

>>> analyzer = vectorizer.build_analyzer()

>>> print(list(analyzer(noise_post)))

['situnaya', 'ibm3090', 'bham', 'ac', 'uk', 'subject', 'test',  
'sorri', 'organ', 'univers', 'birmingham', 'unit', 'kingdom', 'line',  
'nntp', 'post', 'host', 'ibm3090', 'bham', 'ac', 'uk']

This is only after tokenization, lowercasing, and stop word removal. If we also 
min_df and max_df, which  

will be done later in fit_transform, it gets even worse:

>>> useful = set(analyzer(noise_post)).intersection 
(vectorizer.get_feature_names())

>>> print(sorted(useful))

['ac', 'birmingham', 'host', 'kingdom', 'nntp', 'sorri', 'test',  
'uk', 'unit', 'univers']
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Even more, most of the words occur frequently in other posts as well, as we 
can check with the IDF scores. Remember that the higher TF-IDF, the more 
discriminative a term is for a given post. As IDF is a multiplicative factor here,  
a low value of it signals that it is not of great value in general.

>>> for term in sorted(useful):

...     print('IDF(%s)=%.2f'%(term,  
vectorizer._tfidf.idf_[vectorizer.vocabulary_[term]]))

IDF(ac)=3.51

IDF(birmingham)=6.77

IDF(host)=1.74

IDF(kingdom)=6.68

IDF(nntp)=1.77

IDF(sorri)=4.14

IDF(test)=3.83

IDF(uk)=3.70

IDF(unit)=4.42

IDF(univers)=1.91

So, the terms with the highest discriminative power, birmingham and kingdom, 
clearly are not that computer graphics related, the same is the case with the terms 
with lower IDF scores. Understandably, posts from different newsgroups will be 
clustered together.

For our goal, however, this is no big deal, as we are only interested in cutting down 
the number of posts that we have to compare a new post to. After all, the particular 
newsgroup from where our training data came from is of no special interest.

Tweaking the parameters
So what 

Sure. We can, of course, tweak the number of clusters, or play with the vectorizer's 
max_features parameter (you should try that!). Also, we can play with different 
cluster center initializations. Then there are more exciting alternatives to K-means 
itself. There are, for example, clustering approaches that let you even use different 
similarity measurements, such as Cosine similarity, Pearson, or Jaccard. An exciting 
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sklearn.metrics and also contains a full range of different metrics to measure 

sources of the metrics package.

Summary
That was a tough ride from pre-processing over clustering to a solution that can 
convert noisy text into a meaningful concise vector representation, which we can 

more than half of the overall task. But on the way, we learned quite a bit on text 
processing and how simple counting can get you very far in the noisy real-world data.

The ride has been made much smoother, though, because of SciKit and its powerful 
packages. And there is more to explore. In this chapter, we were scratching the 
surface of its capabilities. In the next chapters, we will see more of its power.
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