
[51]

Related Posts

individual datapoints. With a handful of training data items that were paired with
their respective classes, you learned a model, which we can now use to classify
future data items. We called this supervised learning because the learning was

Let's now imagine that we do not possess those labels by which we can learn the

collect. Just imagine the cost if the only way to obtain millions of labels will be to ask

some pattern within the data itself. That is, let the data describe itself. This is what
we will do in this chapter, where we consider the challenge of a question and answer
website. When a user is browsing our site, perhaps because they were searching for

answer. If the presented answers are not what they were looking for, the website
should present (at least) the related answers so that they can quickly see what other
answers are available and hopefully stay on our site.

The naïve approach will be to simply take the post, calculate its similarity to all
other posts and display the top n

related posts.

www.it-ebooks.info

Clustering – Finding Related Posts

[52]

We will achieve this goal in this chapter using clustering. This is a method of
arranging items so that similar items are in one cluster and dissimilar items are in

something on which we can calculate similarity. With such a similarity measurement,
we will then proceed to investigate how we can leverage that to quickly arrive at a
cluster that contains similar posts. Once there, we will only have to check out those
documents that also belong to that cluster. To achieve this, we will introduce you to
the marvelous SciKit library, which comes with diverse machine learning methods
that we will also use in the following chapters.

Measuring the relatedness of posts
From the machine learning point of view, raw text is useless. Only if we manage to
transform it into meaningful numbers, can we then feed it into our machine learning
algorithms, such as clustering. This is true for more mundane operations on text such
as similarity measurement.

How not to do it
One text similarity measure is the Levenshtein distance, which also goes by the name
Edit Distance. Let's say we have two words, "machine" and "mchiene". The similarity
between them can be expressed as the minimum set of edits that are necessary to turn
one word into the other. In this case, the edit distance will be 2, as we have to add an

Looking at our posts, we could cheat by treating whole words as characters and
performing the edit distance calculation on the word level. Let's say we have two
posts (let's concentrate on the following title, for simplicity's sake) called "How
to format my hard disk" and "Hard disk format problems", we will need an edit
distance of 5 because of removing "how", "to", "format", "my" and then adding
"format" and "problems" in the end. Thus, one could express the difference between
two posts as the number of words that have to be added or deleted so that one text
morphs into the other. Although we could speed up the overall approach quite a bit,
the time complexity remains the same.

But even if it would have been fast enough, there is another problem. In the earlier

adding it. So, our distance seems to be not robust enough to take word reordering
into account.

www.it-ebooks.info

[53]

How to do it
More robust than edit distance is the so-called bag of word approach. It totally
ignores the order of words and simply uses word counts as their basis. For each
word in the post, its occurrence is counted and noted in a vector. Not surprisingly,
this step is also called vectorization. The vector is typically huge as it contains as
many elements as words occur in the whole dataset. Take, for instance, two example
posts with the following word counts:

Word Occurrences in post 1 Occurrences in post 2
disk 1 1
format 1 1
how 1 0
hard 1 1
my 1 0
problems 0 1
to 1 0

The columns Occurrences in post 1 and Occurrences in post 2 can now be treated as
simple vectors. We can simply calculate the Euclidean distance between the vectors
of all posts and take the nearest one (too slow, as we have found out earlier). And as
such, we can use them later as our feature vectors in the clustering steps according to
the following procedure:

1. Extract salient features from each post and store it as a vector per post.
2. Then compute clustering on the vectors.
3. Determine the cluster for the post in question.
4. From this cluster, fetch a handful of posts having a different similarity to the

post in question. This will increase diversity.

But there is some more work to be done before we get there. Before we can do that
work, we need some data to work on.

www.it-ebooks.info

Clustering – Finding Related Posts

[54]

Preprocessing – similarity measured as a
similar number of common words
As we have seen earlier, the bag of word approach is both fast and robust. It is,
though, not without challenges. Let's dive directly into them.

Converting raw text into a bag of words
We do not have to write custom code for counting words and representing those
counts as a vector. SciKit's CountVectorizer
but also has a very convenient interface. SciKit's functions and classes are imported
via the sklearn package:

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> vectorizer = CountVectorizer(min_df=1)

The min_df parameter determines how CountVectorizer treats seldom words
(minimum document frequency). If it is set to an integer, all words occurring less
than that value will be dropped. If it is a fraction, all words that occur in less than
that fraction of the overall dataset will be dropped. The max_df parameter works
in a similar manner. If we print the instance, we see what other parameters SciKit
provides together with their default values:

>>> print(vectorizer)
CountVectorizer(analyzer='word', binary=False, charset=None,

 charset_error=None, decode_error='strict',

 dtype=<class 'numpy.int64'>, encoding='utf-8',
input='content',

 lowercase=True, max_df=1.0, max_features=None, min_df=1,

 ngram_range=(1, 1), preprocessor=None, stop_words=None,

 strip_accents=None, token_pattern='(?u)\\b\\w\\w+\\b',

 tokenizer=None, vocabulary=None)

We see that, as expected, the counting is done at word level (analyzer=word) and
words are determined by the regular expression pattern token_pattern. It will,
for example, tokenize "cross-validated" into "cross" and "validated". Let's ignore the
other parameters for now and consider the following two example subject lines:

>>> content = ["How to format my hard disk", " Hard disk format
problems "]

www.it-ebooks.info

[55]

We can now put this list of subject lines into the fit_transform() function of our
vectorizer, which does all the hard vectorization work.

>>> X = vectorizer.fit_transform(content)

>>> vectorizer.get_feature_names()
[u'disk', u'format', u'hard', u'how', u'my', u'problems', u'to']

The vectorizer has detected seven words for which we can fetch the counts individually:

>>> print(X.toarray().transpose())

[[1 1]

 [1 1]

 [1 1]

 [1 0]

 [1 0]

 [0 1]

 [1 0]]

the second contains all but "how", "my", and "to". In fact, these are exactly the same
columns as we have seen in the preceding table. From X, we can extract a feature
vector that we will use to compare two documents with each other.

peculiarities we have to account for. So let's pick a random post, for which we then
create the count vector. We will then compare its distance to all the count vectors and
fetch the post with the smallest one.

Counting words
Let's play with the toy dataset consisting of the following posts:

Post filename Post content
01.txt This is a toy post about machine learning. Actually, it contains not much

interesting stuff.
02.txt Imaging databases can get huge.
03.txt Most imaging databases save images permanently.
04.txt Imaging databases store images.
05.txt Imaging databases store images. Imaging databases store images.

Imaging databases store images.

www.it-ebooks.info

Clustering – Finding Related Posts

[56]

"imaging databases".

Assuming that the posts are located in the directory DIR, we can feed
CountVectorizer with it:

>>> posts = [open(os.path.join(DIR, f)).read() for f in
os.listdir(DIR)]

>>> from sklearn.feature_extraction.text import CountVectorizer

>>> vectorizer = CountVectorizer(min_df=1)

We have to notify the vectorizer about the full dataset so that it knows upfront what
words are to be expected:

>>> X_train = vectorizer.fit_transform(posts)

>>> num_samples, num_features = X_train.shape

>>> print("#samples: %d, #features: %d" % (num_samples,
num_features))

#samples: 5, #features: 25

words that have been tokenized will be counted:

>>> print(vectorizer.get_feature_names())
[u'about', u'actually', u'capabilities', u'contains', u'data',
u'databases', u'images', u'imaging', u'interesting', u'is', u'it',
u'learning', u'machine', u'most', u'much', u'not', u'permanently',
u'post', u'provide', u'save', u'storage', u'store', u'stuff',
u'this', u'toy']

Now we can vectorize our new post.

>>> new_post = "imaging databases"

>>> new_post_vec = vectorizer.transform([new_post])

Note that the count vectors returned by the transform method are sparse. That is,
each vector does not store one count value for each word, as most of those counts
will be zero (the post does not contain the word). Instead, it uses the more memory-

coo_matrix (for "COOrdinate"). Our new post, for instance,
actually contains only two elements:

>>> print(new_post_vec)

 (0, 7) 1

 (0, 5) 1

www.it-ebooks.info

[]

Via its toarray() member, we can once again access the full ndarray:

>>> print(new_post_vec.toarray())

[[0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]]

We need to use the full array, if we want to use it as a vector for similarity
calculations. For the similarity measurement (the naïve one), we calculate the
Euclidean distance between the count vectors of the new post and all the old posts:

>>> import scipy as sp

>>> def dist_raw(v1, v2):

... delta = v1-v2

... return sp.linalg.norm(delta.toarray())

The norm() function calculates the Euclidean norm (shortest distance). This is just one

Just take a look at the paper in The Python
Papers Source Codes, in which Maurice Ling nicely presents 35 different ones.

With dist_raw, we just need to iterate over all the posts and remember the
nearest one:

>>> import sys

>>> best_doc = None

>>> best_dist = sys.maxint

>>> best_i = None

>>> for i, post in enumerate(num_samples):

... if post == new_post:

... continue

... post_vec = X_train.getrow(i)

... d = dist_raw(post_vec, new_post_vec)

... print("=== Post %i with dist=%.2f: %s"%(i, d, post))

... if d<best_dist:

... best_dist = d

... best_i = i

>>> print("Best post is %i with dist=%.2f"%(best_i, best_dist))

=== Post 0 with dist=4.00: This is a toy post about machine learning.
Actually, it contains not much interesting stuff.

=== Post 1 with dist=1.73: Imaging databases provide storage
capabilities.

www.it-ebooks.info

Clustering – Finding Related Posts

[58]

=== Post 2 with dist=2.00: Most imaging databases save images
permanently.

=== Post 3 with dist=1.41: Imaging databases store data.

=== Post 4 with dist=5.10: Imaging databases store data. Imaging
databases store data. Imaging databases store data.

Best post is 3 with dist=1.41

Congratulations, we

with the new post. We can also understand that Post 1 is very similar to the new
post, but not the winner, as it contains one word more than Post 3, which is not
contained in the new post.

Looking at Post 3 and Post 4, however, the picture is not so clear any more. Post 4 is
the same as Post 3 duplicated three times. So, it should also be of the same similarity
to the new post as Post 3.

Printing the corresponding feature vectors explains why:

>>> print(X_train.getrow(3).toarray())

[[0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0]]

>>> print(X_train.getrow(4).toarray())

[[0 0 0 0 3 3 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0]]

Obviously, using only the counts of the raw words is too simple. We will have to
normalize them to get vectors of unit length.

Normalizing word count vectors
We will have to extend dist_raw to calculate the vector distance not on the raw
vectors but on the normalized instead:

>>> def dist_norm(v1, v2):

... v1_normalized = v1/sp.linalg.norm(v1.toarray())

... v2_normalized = v2/sp.linalg.norm(v2.toarray())

... delta = v1_normalized - v2_normalized

... return sp.linalg.norm(delta.toarray())

This leads to the following similarity measurement:

=== Post 0 with dist=1.41: This is a toy post about machine learning.
Actually, it contains not much interesting stuff.

=== Post 1 with dist=0.86: Imaging databases provide storage
capabilities.

www.it-ebooks.info

[59]

=== Post 2 with dist=0.92: Most imaging databases save images
permanently.

=== Post 3 with dist=0.77: Imaging databases store data.

=== Post 4 with dist=0.77: Imaging databases store data. Imaging
databases store data. Imaging databases store data.

Best post is 3 with dist=0.77

This looks a bit better now. Post 3 and Post 4 are calculated as being equally similar.
One could argue whether that much repetition would be a delight to the reader, but
from the point of counting the words in the posts this seems to be right.

Removing less important words
Let's have another look at Post 2. Of its words that are not in the new post, we have
"most", "save", "images", and "permanently". They are actually quite different in the
overall importance to the post. Words such as "most" appear very often in all sorts of
different contexts and are called stop words. They do not carry as much information
and thus should not be weighed as much as words such as "images", which doesn't
occur often in different contexts. The best option would be to remove all the words
that are so frequent that they do not help to distinguish between different texts.
These words are called stop words.

As this is such a common step in text processing, there is a simple parameter in
CountVectorizer to achieve that:

>>> vectorizer = CountVectorizer(min_df=1, stop_words='english')

If you have a clear picture of what kind of stop words you would want to remove,
you can also pass a list of them. Setting stop_words to english will use a set of

get_stop_words():

>>> sorted(vectorizer.get_stop_words())[0:20]

['a', 'about', 'above', 'across', 'after', 'afterwards', 'again',
'against', 'all', 'almost', 'alone', 'along', 'already', 'also',
'although', 'always', 'am', 'among', 'amongst', 'amoungst']

The new word list is seven words lighter:

[u'actually', u'capabilities', u'contains', u'data', u'databases',
u'images', u'imaging', u'interesting', u'learning', u'machine',
u'permanently', u'post', u'provide', u'save', u'storage', u'store',
u'stuff', u'toy']

www.it-ebooks.info

Clustering – Finding Related Posts

[60]

Without stop words, we arrive at the following similarity measurement:

=== Post 0 with dist=1.41: This is a toy post about machine learning.
Actually, it contains not much interesting stuff.

=== Post 1 with dist=0.86: Imaging databases provide storage
capabilities.

=== Post 2 with dist=0.86: Most imaging databases save images
permanently.

=== Post 3 with dist=0.77: Imaging databases store data.

=== Post 4 with dist=0.77: Imaging databases store data. Imaging
databases store data. Imaging databases store data.

Best post is 3 with dist=0.77

Post 2 is now on par with Post 1. It has, however, changed not much overall since
our posts are kept short for demonstration purposes. It will become vital when we
look at real-world data.

Stemming
One thing is still missing. We count similar words in different variants as different
words. Post 2, for instance, contains "imaging" and "images". It will make sense to
count them together. After all, it is the same concept they are referring to.

contain a stemmer by default. With the (NLTK), we can
download a free software toolkit, which provides a stemmer that we can easily plug
into CountVectorizer.

Installing and using NLTK
How to install NLTK on your operating system is described in detail at http://
nltk.org/install.html
3, which means that also pip install will not work. We can, however, download the
package from http://www.nltk.org/nltk3-alpha/ and install it manually after
uncompressing using Python's setup.py install.

To check whether your installation was successful, open a Python interpreter
and type:

>>> import nltk

www.it-ebooks.info

[61]

Python 3 Text
, , . To

play a little bit with a stemmer, you can visit the web page http://
text-processing.com/demo/stem/.

NLTK comes with different stemmers. This is necessary, because every language has
a different set of rules for stemming. For English, we can take SnowballStemmer.

>>> import nltk.stem

>>> s = nltk.stem.SnowballStemmer('english')

>>> s.stem("graphics")

u'graphic'

>>> s.stem("imaging")

u'imag'

>>> s.stem("image")

u'imag'

>>> s.stem("imagination")

u'imagin'

>>> s.stem("imagine")

u'imagin'

Note that stemming does not necessarily have to result in
valid English words.

It also works with verbs:

>>> s.stem("buys")

u'buy'

>>> s.stem("buying")

u'buy'

This means, it works most of the time:

>>> s.stem("bought")

u'bought'

www.it-ebooks.info

Clustering – Finding Related Posts

[62]

Extending the vectorizer with NLTK's stemmer
We need to stem the posts before we feed them into CountVectorizer. The class
provides several hooks with which we can customize the stage's preprocessing
and tokenization. The preprocessor and tokenizer can be set as parameters in the
constructor. We do not want to place the stemmer into any of them, because we
will then have to do the tokenization and normalization by ourselves. Instead, we
overwrite the build_analyzer method:

>>> import nltk.stem

>>> english_stemmer = nltk.stem.SnowballStemmer('english'))

>>> class StemmedCountVectorizer(CountVectorizer):

... def build_analyzer(self):

... analyzer = super(StemmedCountVectorizer,
self).build_analyzer()

... return lambda doc: (english_stemmer.stem(w) for w in
analyzer(doc))

>>> vectorizer = StemmedCountVectorizer(min_df=1,
stop_words='english')

This will do the following process for each post:

1.
(done in the parent class).

2. Extracting all individual words in the tokenization step (done in the
parent class).

3. This concludes with converting each word into its stemmed version.

As a result, we now have one feature less, because "images" and "imaging" collapsed
to one. Now, the set of feature names is as follows:

[u'actual', u'capabl', u'contain', u'data', u'databas', u'imag',
u'interest', u'learn', u'machin', u'perman', u'post', u'provid',
u'save', u'storag', u'store', u'stuff', u'toy']

Running our new stemmed vectorizer over our posts, we see that collapsing
"imaging" and "images", revealed that actually Post 2 is the most similar post to our
new post, as it contains the concept "imag" twice:

=== Post 0 with dist=1.41: This is a toy post about machine learning.
Actually, it contains not much interesting stuff.

=== Post 1 with dist=0.86: Imaging databases provide storage
capabilities.

www.it-ebooks.info

[63]

=== Post 2 with dist=0.63: Most imaging databases save images
permanently.

=== Post 3 with dist=0.77: Imaging databases store data.

=== Post 4 with dist=0.77: Imaging databases store data. Imaging
databases store data. Imaging databases store data.

Best post is 2 with dist=0.63

Stop words on steroids
Now that we have a reasonable way to extract a compact vector from a noisy textual
post, let's step back for a while to think about what the feature values actually mean.

The feature values simply count occurrences of terms in a post. We silently assumed
that higher values for a term also mean that the term is of greater importance to the
given post. But what about, for instance, the word "subject", which naturally occurs

CountVectorizer to remove it
as well by means of its max_df parameter. We can, for instance, set it to 0.9 so that
all words that occur in more than 90 percent of all posts will always be ignored.

willing to set max_df
problem that some terms are just more discriminative than others.

This can only be solved by counting term frequencies for every post and in addition
discount those that appear in many posts. In other words, we want a high value for a
given term in a given value, if that term occurs often in that particular post and very
seldom anywhere else.

This is exactly what term frequency – inverse document frequency (TF-IDF)
does. TF stands for the counting part, while IDF factors in the discounting. A naïve
implementation will look like this:

>>> import scipy as sp

>>> def tfidf(term, doc, corpus):

... tf = doc.count(term) / len(doc)

... num_docs_with_term = len([d for d in corpus if term in d])

... idf = sp.log(len(corpus) / num_docs_with_term)

... return tf * idf

 did not simply count the terms, but also normalize the counts by the
document length. This way, longer documents do not have an unfair advantage over
shorter ones.

www.it-ebooks.info

Clustering – Finding Related Posts

[64]

For the following documents, D, consisting of three already tokenized documents,
we can see how the terms are treated differently, although all appear equally often
per document:

>>> a, abb, abc = ["a"], ["a", "b", "b"], ["a", "b", "c"]

>>> D = [a, abb, abc]

>>> print(tfidf("a", a, D))

0.0

>>> print(tfidf("a", abb, D))

0.0

>>> print(tfidf("a", abc, D))

0.0

>>> print(tfidf("b", abb, D))

0.270310072072

>>> print(tfidf("a", abc, D))

0.0

>>> print(tfidf("b", abc, D))

0.135155036036

>>> print(tfidf("c", abc, D))

0.366204096223

We see that a carries no meaning for any document since it is contained everywhere.
The b term is more important for the document abb than for abc as it occurs there twice.

In reality, there are more corner cases to handle than the preceding example does.
Thanks to SciKit, we don't have to think of them as they are already nicely packaged
in TfidfVectorizer, which is inherited from CountVectorizer. Sure enough, we
don't want to miss our stemmer:

>>> from sklearn.feature_extraction.text import TfidfVectorizer

>>> class StemmedTfidfVectorizer(TfidfVectorizer):

... def build_analyzer(self):

... analyzer = super(TfidfVectorizer,

 self).build_analyzer()

... return lambda doc: (

 english_stemmer.stem(w) for w in analyzer(doc))

>>> vectorizer = StemmedTfidfVectorizer(min_df=1,

 stop_words='english', decode_error='ignore')

www.it-ebooks.info

[65]

The resulting document vectors will not contain counts any more. Instead they will
contain the individual TF-IDF values per term.

Our achievements and goals
Our current text pre-processing phase includes the following steps:

1. Firstly, tokenizing the text.
2. This is followed by throwing away words that occur way too often to be of

any help in detecting relevant posts.
3. Throwing away words that occur way so seldom so that there is only little

chance that they occur in future posts.
4. Counting the remaining words.
5. Finally, calculating TF-IDF values from the counts, considering the whole

text corpus.

Again, we can congratulate ourselves. With this process, we are able to convert a
bunch of noisy text into a concise representation of feature values.

But, as simple and powerful the bag of words approach with its extensions is, it has
some drawbacks, which we should be aware of:

• It does not cover word relations: With the aforementioned vectorization
approach, the text "Car hits wall" and "Wall hits car" will both have the
same feature vector.

• It does not capture negations correctly: For instance, the text "I will eat
ice cream" and "I will not eat ice cream" will look very similar by means of
their feature vectors although they contain quite the opposite meaning. This
problem, however, can be easily changed by not only counting individual
words, also called "unigrams", but instead also considering bigrams (pairs of
words) or trigrams (three words in a row).

• It totally fails with misspelled words: Although it is clear to the human
beings among us readers that "database" and "databas" convey the same
meaning, our approach will treat them as totally different words.

For brevity's sake, let's nevertheless stick with the current approach, which we can
clusters from.

www.it-ebooks.info

Clustering – Finding Related Posts

[66]

Clustering
Finally, we
Not surprisingly, there are many ways to group them together. Most clustering

Flat clustering divides the posts into a set of clusters without relating the clusters to
each other. The goal is simply to come up with a partitioning such that all posts in
one cluster are most similar to each other while being dissimilar from the posts in all

In hierarchical clustering, the
Instead, hierarchical clustering creates a hierarchy of clusters. While similar posts
are grouped into one cluster, similar clusters are again grouped into one .
This is done recursively, until only one cluster is left that contains everything. In
this hierarchy, one can then choose the desired number of clusters after the fact.

SciKit provides a wide range of clustering approaches in the sklearn.cluster

them at http://scikit-learn.org/dev/modules/clustering.html.

bit with the desired number of clusters.

K-means
k-means is the
the desired number of clusters, num_clusters, it maintains that number of so-called
cluster centroids. Initially, it will pick any num_clusters posts and set the centroids
to their feature vector. Then it will go through all other posts and assign them the
nearest centroid as their current cluster. Following this, it will move each centroid
into the middle of all the vectors of that particular class. This changes, of course, the
cluster assignment. Some posts are now nearer to another cluster. So it will update
the assignments for those changed posts. This is done as long as the centroids move
considerably. After some iterations, the movements will fall below a threshold and
we consider clustering to be converged.

www.it-ebooks.info

[]

Let's play this through with a toy example of posts containing only two words. Each
point in the following chart represents one document:

www.it-ebooks.info

Clustering – Finding Related Posts

[68]

After running one iteration of K-means, that is, taking any two vectors as starting
points, assigning the labels to the rest and updating the cluster centers to now be the
center point of all points in that cluster, we get the following clustering:

www.it-ebooks.info

[69]

Because the cluster centers moved, we have to reassign the cluster labels and
recalculate the cluster centers. After iteration 2, we get the following clustering:

The arrows
example, the cluster centers don't move noticeably any more (SciKit's tolerance
threshold is 0.0001 by default).

After the clustering has settled, we just need to note down the cluster centers and
their identity. Each new document that comes in, we then have to vectorize and
compare against all cluster centers. The cluster center with the smallest distance to
our new post vector belongs to the cluster we will assign to the new post.

www.it-ebooks.info

Clustering – Finding Related Posts

[]

Getting test data to evaluate our ideas on
In order to
dataset that resembles the data we are expecting in the future so that we can test
our approach. For our purpose, we need documents about technical topics that are
already grouped together so that we can check whether our algorithm works as
expected when we apply it later to the posts we hope to receive.

One standard dataset in machine learning is the 20newsgroup dataset, which
contains 18,826 posts from 20 different newsgroups. Among the groups' topics are
technical ones such as comp.sys.mac.hardware or sci.crypt, as well as more
politics- and religion-related ones such as talk.politics.guns or soc.religion.
christian. We will restrict ourselves to the technical groups. If we assume each

posts works.

The dataset can be downloaded from http://people.csail.mit.edu/
jrennie/20Newsgroups. Much more comfortable, however, is to download it
from MLComp at http://mlcomp.org/datasets/379 (free registration required).
SciKit already contains custom loaders for that dataset and rewards you with very
convenient data loading options.

dataset-379-20news-18828_WJQIG.zip,
which we have to unzip to get the directory 379, which contains the datasets. We
also have to notify SciKit about the path containing that data directory. It contains

test, train, and raw. The test and train
directories split the whole dataset into 60 percent of training and 40 percent of testing
posts. If you go this route, then you either need to set the environment variable
MLCOMP_DATASETS_HOME or you specify the path directly with the mlcomp_root
parameter when loading the dataset.

http://mlcomp.org is a website for comparing machine learning

right dataset to tune your machine learning program, and exploring
how other people use a particular dataset. For instance, you can see
how well other people's algorithms performed on particular datasets
and compare against them.

www.it-ebooks.info

[]

For convenience, the sklearn.datasets module also contains the
fetch_20newsgroups function, which automatically downloads the
data behind the scenes:

>>> import sklearn.datasets

>>> all_data = sklearn.datasets.fetch_20newsgroups(subset='all')

>>> print(len(all_data.filenames))

18846

>>> print(all_data.target_names)

['alt.atheism', 'comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
'comp.windows.x', 'misc.forsale', 'rec.autos', 'rec.motorcycles',
'rec.sport.baseball', 'rec.sport.hockey', 'sci.crypt',
'sci.electronics', 'sci.med', 'sci.space', 'soc.religion.christian',
'talk.politics.guns', 'talk.politics.mideast', 'talk.politics.misc',
'talk.religion.misc']

We can choose between training and test sets:

>>> train_data = sklearn.datasets.fetch_20newsgroups(subset='train',
categories=groups)

>>> print(len(train_data.filenames))

11314

>>> test_data = sklearn.datasets.fetch_20newsgroups(subset='test')

>>> print(len(test_data.filenames))

7532

For simplicity's sake, we will restrict ourselves to only some newsgroups so
that the overall experimentation cycle is shorter. We can achieve this with the
categories parameter:

>>> groups = ['comp.graphics', 'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware', 'comp.sys.mac.hardware',
'comp.windows.x', 'sci.space']

>>> train_data = sklearn.datasets.fetch_20newsgroups(subset='train',
categories=groups)

>>> print(len(train_data.filenames))

3529

>>> test_data = sklearn.datasets.fetch_20newsgroups(subset='test',
categories=groups)

>>> print(len(test_data.filenames))

2349

www.it-ebooks.info

Clustering – Finding Related Posts

[]

Clustering posts
would have already noticed one thing—real data is noisy. The newsgroup

dataset is no exception. It even contains invalid characters that will result in
UnicodeDecodeError.

We have to tell the vectorizer to ignore them:

>>> vectorizer = StemmedTfidfVectorizer(min_df=10, max_df=0.5,

... stop_words='english', decode_error='ignore')

>>> vectorized = vectorizer.fit_transform(train_data.data)

>>> num_samples, num_features = vectorized.shape

>>> print("#samples: %d, #features: %d" % (num_samples,
num_features))

#samples: 3529, #features: 4712

We now have a pool of 3,529 posts and extracted for each of them a feature vector

to 50 for this chapter and hope you are curious enough to try out different values as
an exercise.

>>> num_clusters = 50

>>> from sklearn.cluster import KMeans

>>> km = KMeans(n_clusters=num_clusters, init='random', n_init=1,

verbose=1, random_state=3)

>>> km.fit(vectorized)

That's it. We provided a random state just so that you can get the same results. In

information out of members of km
a corresponding integer label in km.labels_:

>>> print(km.labels_)

[48 23 31 ..., 6 2 22]

>>> print(km.labels_.shape)

3529

The cluster centers can be accessed via km.cluster_centers_.

In the next section, we will see how we can assign a cluster to a newly arriving post
using km.predict.

www.it-ebooks.info

[]

Solving our initial challenge
We will now put everything together and demonstrate our system for the following
new post that we assign to the new_post variable:

its label:

>>> new_post_vec = vectorizer.transform([new_post])

>>> new_post_label = km.predict(new_post_vec)[0]

Now that we have the clustering, we do not need to compare new_post_vec to all
post vectors. Instead, we can focus only on the posts of the same cluster. Let's fetch
their indices in the original data set:

>>> similar_indices = (km.labels_==new_post_label).nonzero()[0]

The comparison in the bracket results in a Boolean array, and nonzero converts that
array into a smaller array containing the indices of the True elements.

Using similar_indices, we then simply have to build a list of posts together with
their similarity scores:

>>> similar = []

>>> for i in similar_indices:

... dist = sp.linalg.norm((new_post_vec -
vectorized[i]).toarray())

... similar.append((dist, dataset.data[i]))

>>> similar = sorted(similar)

>>> print(len(similar))

131

www.it-ebooks.info

Clustering – Finding Related Posts

[]

We found 131 posts in the cluster of our post. To give the user a quick idea of what
kind of similar posts are available, we can now present the most similar post (show_
at_1), and two less similar but still related ones – all from the same cluster.

>>> show_at_1 = similar[0]

>>> show_at_2 = similar[int(len(similar)/10)]

>>> show_at_3 = similar[int(len(similar)/2)]

The following table shows the posts together with their similarity values:

Position Similarity Excerpt from post
1 1.038 BOOT PROBLEM with IDE controller

Hi,
I've got a Multi I/O card (IDE controller + serial/parallel interface)

80AT connected to it. I was able to format the hard disk, but I
could not boot from it. I can boot from drive A: (which disk drive
does not matter) but if I remove the disk from drive A and press
the reset switch, the LED of drive A: continues to glow, and the
hard disk is not accessed at all. I guess this must be a problem of
either the Multi I/o card or floppy disk drive settings (jumper

reason for it. […]
2 1.150 Booting from B drive

I have a 5 1/4" drive as drive A. How can I make the system boot

to boot: from either A or B, checking them in order for a bootable
disk. But: if I have to switch cables around and simply switch the
drives so that: it can't boot 5 1/4" disks, that's OK. Also, boot_b
won't do the trick for me. […]
 […]

3 1.280 IBM PS/1 vs TEAC FD
Hello, I already tried our national news group without success. I
tried to replace a friend s original IBM floppy disk in his PS/1-PC
with a normal TEAC drive. I already identified the power supply
on pins 3 (5V) and 6 (12V), shorted pin 6 (5.25"/3.5" switch) and
inserted pullup resistors (2K2) on pins 8, 26, 28, 30, and 34. The
computer doesn't complain about a missing FD, but the FD s light
stays on all the time. The drive spins up o.k. when I insert a disk,
but I can't access it. The TEAC works fine in a normal PC. Are

 […]

www.it-ebooks.info

[]

It is interesting
contains all the salient words from our new post. The second also revolves around

is neither about hard disks, nor about booting problems. Still, of all the posts, we
would say that they belong to the same domain as the new post.

Another look at noise
We should not expect a perfect clustering in the sense that posts from the same
newsgroup (for example, comp.graphics) are also clustered together. An example
will give us a quick impression of the noise that we have to expect. For the sake of
simplicity, we will focus on one of the shorter posts:

>>> post_group = zip(train_data.data, train_data.target)

>>> all = [(len(post[0]), post[0], train_data.target_names[post[1]])
for post in post_group]

>>> graphics = sorted([post for post in all if
post[2]=='comp.graphics'])

>>> print(graphics[5])

(245, 'From: SITUNAYA@IBM3090.BHAM.AC.UK\nSubject:
test....(sorry)\nOrganization: The University of Birmingham, United
Kingdom\nLines: 1\nNNTP-Posting-Host: ibm3090.bham.ac.uk<…snip…>',
'comp.graphics')

For this post, there is no real indication that it belongs to comp.graphics considering
only the wording that is left after the preprocessing step:

>>> noise_post = graphics[5][1]

>>> analyzer = vectorizer.build_analyzer()

>>> print(list(analyzer(noise_post)))

['situnaya', 'ibm3090', 'bham', 'ac', 'uk', 'subject', 'test',
'sorri', 'organ', 'univers', 'birmingham', 'unit', 'kingdom', 'line',
'nntp', 'post', 'host', 'ibm3090', 'bham', 'ac', 'uk']

This is only after tokenization, lowercasing, and stop word removal. If we also
min_df and max_df, which

will be done later in fit_transform, it gets even worse:

>>> useful = set(analyzer(noise_post)).intersection
(vectorizer.get_feature_names())

>>> print(sorted(useful))

['ac', 'birmingham', 'host', 'kingdom', 'nntp', 'sorri', 'test',
'uk', 'unit', 'univers']

www.it-ebooks.info

Clustering – Finding Related Posts

[]

Even more, most of the words occur frequently in other posts as well, as we
can check with the IDF scores. Remember that the higher TF-IDF, the more
discriminative a term is for a given post. As IDF is a multiplicative factor here,
a low value of it signals that it is not of great value in general.

>>> for term in sorted(useful):

... print('IDF(%s)=%.2f'%(term,
vectorizer._tfidf.idf_[vectorizer.vocabulary_[term]]))

IDF(ac)=3.51

IDF(birmingham)=6.77

IDF(host)=1.74

IDF(kingdom)=6.68

IDF(nntp)=1.77

IDF(sorri)=4.14

IDF(test)=3.83

IDF(uk)=3.70

IDF(unit)=4.42

IDF(univers)=1.91

So, the terms with the highest discriminative power, birmingham and kingdom,
clearly are not that computer graphics related, the same is the case with the terms
with lower IDF scores. Understandably, posts from different newsgroups will be
clustered together.

For our goal, however, this is no big deal, as we are only interested in cutting down
the number of posts that we have to compare a new post to. After all, the particular
newsgroup from where our training data came from is of no special interest.

Tweaking the parameters
So what

Sure. We can, of course, tweak the number of clusters, or play with the vectorizer's
max_features parameter (you should try that!). Also, we can play with different
cluster center initializations. Then there are more exciting alternatives to K-means
itself. There are, for example, clustering approaches that let you even use different
similarity measurements, such as Cosine similarity, Pearson, or Jaccard. An exciting

www.it-ebooks.info

[]

sklearn.metrics and also contains a full range of different metrics to measure

sources of the metrics package.

Summary
That was a tough ride from pre-processing over clustering to a solution that can
convert noisy text into a meaningful concise vector representation, which we can

more than half of the overall task. But on the way, we learned quite a bit on text
processing and how simple counting can get you very far in the noisy real-world data.

The ride has been made much smoother, though, because of SciKit and its powerful
packages. And there is more to explore. In this chapter, we were scratching the
surface of its capabilities. In the next chapters, we will see more of its power.

www.it-ebooks.info

www.it-ebooks.info

