
142

Chapter 7CHAPTER 7

Modeling with Decision Trees 7

You’ve now seen a few different automatic classifiers, and this chapter will expand
on them by introducing a very useful method called decision tree learning. Unlike
most other classifiers, the models produced by decision trees are easy to interpret—
the list of numbers in a Bayesian classifier will tell you how important each word is,
but you really have to do the calculation to know what the outcome will be. A neural
network is even more difficult to interpret, since the weight of the connection
between two neurons has very little meaning on its own. You can understand the
reasoning process of a decision tree just by looking at it, and you can even convert it
to a simple series of if-then statements.

This chapter will cover three different examples that employ decision trees. The first
shows how to predict which of a site’s users are likely to pay for premium access.
Many online applications that are priced by subscription or on a per-use basis offer
users a way to try the applications before spending money. In the case of subscrip-
tions, the sites usually offer a time-limited free trial or a feature-limited free version.
Sites that employ per-use pricing may offer a free session or similar incentive.

The other examples, covered later in the chapter, will use decision trees to model
housing prices and “hotness.”

Predicting Signups
Sometimes when a high-traffic site links to a new application that offers free
accounts and subscription accounts, the application will get thousands of new users.
Many of these users are driven by curiosity and are not really looking for that
particular type of application, so there is a very low likelihood that they will become
paying customers. This makes it difficult to distinguish and follow up with likely
customers, so many sites resort to mass-emailing everyone who has signed up, rather
than using a more targeted approach.

Predicting Signups | 143

To help with this problem, it would be useful to be able to predict the likelihood that
a user will become a paying customer. You know by now that you can use a Bayesian
classifier or neural network to do this. However, clarity is very important in this
case—if you know the factors that indicate a user will become a customer, you can
use that information to guide an advertising strategy, to make certain aspects of the
site more accessible, or to use other strategies that will help increase the number of
paying customers.

For this example, imagine an online application that offers a free trial. Users sign up
for the trial and use the site for a certain number of days, after which they can choose
to upgrade to a basic or premium service. As users sign up for the free trial, informa-
tion about them is collected, and at the end of the trial, the site owners note which
users chose to become paying customers.

To minimize annoyance for users and sign them up as quickly as possible, the site
doesn’t ask them a lot of questions about themselves—instead, it collects information
from the server logs, such as the site that referred them, their geographical location,
how many pages they viewed before signing up, and so on. If you collect the data and
put it in a table, it might look like Table 7-1.

Arrange the data in a list of rows, with each row being a list of columns. The final
column in each row indicates whether or not the user signed up; this Service column
is the value you want to be able to predict. Create a new file called treepredict.py to
work with throughout this chapter. If you’d like to enter the data manually, add this
to the top of the file:

Table 7-1. User behavior and final purchase decision for a web site

Referrer Location Read FAQ Pages viewed Service chosen

Slashdot USA Yes 18 None

Google France Yes 23 Premium

Digg USA Yes 24 Basic

Kiwitobes France Yes 23 Basic

Google UK No 21 Premium

(direct) New Zealand No 12 None

(direct) UK No 21 Basic

Google USA No 24 Premium

Slashdot France Yes 19 None

Digg USA No 18 None

Google UK No 18 None

Kiwitobes UK No 19 None

Digg New Zealand Yes 12 Basic

Google UK Yes 18 Basic

Kiwitobes France Yes 19 Basic

144 | Chapter 7: Modeling with Decision Trees

my_data=[['slashdot','USA','yes',18,'None'],
 ['google','France','yes',23,'Premium'],
 ['digg','USA','yes',24,'Basic'],
 ['kiwitobes','France','yes',23,'Basic'],
 ['google','UK','no',21,'Premium'],
 ['(direct)','New Zealand','no',12,'None'],
 ['(direct)','UK','no',21,'Basic'],
 ['google','USA','no',24,'Premium'],
 ['slashdot','France','yes',19,'None'],
 ['digg','USA','no',18,'None'],
 ['google','UK','no',18,'None'],
 ['kiwitobes','UK','no',19,'None'],
 ['digg','New Zealand','yes',12,'Basic'],
 ['slashdot','UK','no',21,'None'],
 ['google','UK','yes',18,'Basic'],
 ['kiwitobes','France','yes',19,'Basic']]

If you’d prefer to download the dataset, it’s available at http://kiwitobes.com/tree/
decision_tree_example.txt.

To load in the file, add this line to the top of treepredict.py:

my_data=[line.split('\t') for line in file('decision_tree_example.txt')]

You now have information about users’ locations, where they connected from, and
how much time they spent on your site before signing up; you just need a way to fill
in the Service column with a good guess.

Introducing Decision Trees
Decision trees are one of the simpler machine-learning methods. They are a com-
pletely transparent method of classifying observations, which, after training, look
like a series of if-then statements arranged into a tree. Figure 7-1 shows an example
of a decision tree for classifying fruit.

Once you have a decision tree, it’s quite easy to see how it makes all of its decisions.
Just follow the path down the tree that answers each question correctly and you’ll
eventually arrive at an answer. Tracing back from the node where you ended up gives
a rationale for the final classification.

This chapter will look at a way to represent a decision tree, at code for constructing
the tree from real data, and at code for classifying new observations. The first step is
to create a representation of a tree. Create a new class called decisionnode, which
represents each node in the tree:

class decisionnode:
 def __init_ _(self,col=-1,value=None,results=None,tb=None,fb=None):
 self.col=col
 self.value=value
 self.results=results
 self.tb=tb
 self.fb=fb

Training the Tree | 145

Each node has five instance variables, all of which may be set in the initializer:

• col is the column index of the criteria to be tested.

• value is the value that the column must match to get a true result.

• tb and fb are decisionnodes, which are the next nodes in the tree if the result is
true or false, respectively.

• results stores a dictionary of results for this branch. This is None for everything
except endpoints.

The functions that create a tree return the root node, which can be traversed by
following its True or False branches until a branch with results is reached.

Training the Tree
This chapter uses an algorithm called CART (Classification and Regression Trees).
To build the decision tree, the algorithm first creates a root node. By considering all
the observations in the table, it chooses the best variable to divide up the data. To do
this, it looks at all the different variables and decides which condition (for example,
“Did the user read the FAQ?”) would separate the outcomes (which service the user
signed up for) in a way that makes it easier to guess what the user will do.

divideset is a function that divides the rows into two sets based on the data in a spe-
cific column. This function takes a list of rows, a column number, and a value to
divide into the column. In the case of Read FAQ, the possible values are Yes or No,
and for Referrer, there are several possibilities. It then returns two lists of rows: the
first containing the rows where the data in the specified column matches the value,
and the second containing the rows where it does not.

Figure 7-1. Example decision tree

color = green?

color = red?

shape = round?

diameter > 4in?

diameter > 6in?

No Yes

No Yes

diameter > 2in? diameter > 2in?

No Yes

Watermelon

No Yes

stone = true? Apple

No Yes

Banana

No Yes

AppleGrape

No Yes

GrapefruitLemon

No Yes

CherryGrape

146 | Chapter 7: Modeling with Decision Trees

Divides a set on a specific column. Can handle numeric
or nominal values
def divideset(rows,column,value):
 # Make a function that tells us if a row is in
 # the first group (true) or the second group (false)
 split_function=None
 if isinstance(value,int) or isinstance(value,float):
 split_function=lambda row:row[column]>=value
 else:
 split_function=lambda row:row[column]==value

 # Divide the rows into two sets and return them
 set1=[row for row in rows if split_function(row)]
 set2=[row for row in rows if not split_function(row)]
 return (set1,set2)

The code creates a function to divide the data called split_function, which depends
on knowing if the data is numerical or not. If it is, the true criterion is that the value
in this column is greater than value. If the data is not numeric, split_function sim-
ply determines whether the column’s value is the same as value. It uses this function
to divide the data into two sets, one where split_function returns true and one
where it returns false.

Start a Python session and try dividing the results by the Read FAQ column:

$ python
>>> import treepredict
>>> treepredict.divideset(treepredict.my_data,2,'yes')
([['slashdot', 'USA', 'yes', 18, 'None'], ['google', 'France', 'yes', 23,
'Premium'],...]]
[['google', 'UK', 'no', 21, 'Premium'], ['(direct)', 'New Zealand', 'no', 12,
'None'],...])

Table 7-2 shows the division.

This doesn’t look like a good variable for separating the outcomes at this stage, since
both sides seem pretty well mixed. We need a way to choose the best variable.

Table 7-2. Outcomes based on Read FAQ column values

True False

None

Premium

Basic

Basic

None

Basic

Basic

Premium

None

Basic

Premium

None

None

None

Choosing the Best Split | 147

Choosing the Best Split
Our casual observation that the chosen variable isn’t very good may be accurate, but
to choose which variable to use in a software solution, you need a way to measure
how mixed a set is. What you want to do is find the variable that creates the two sets
with the least possible mixing. The first function you’ll need is one to get the counts
of each result in a set. Add this to treepredict.py:

Create counts of possible results (the last column of
each row is the result)
def uniquecounts(rows):
 results={}
 for row in rows:
 # The result is the last column
 r=row[len(row)-1]
 if r not in results: results[r]=0
 results[r]+=1
 return results

uniquecounts finds all the different possible outcomes and returns them as a dictio-
nary of how many times they each appear. This is used by the other functions to
calculate how mixed a set is. There are a few different metrics for measuring this, and
two will be considered here: Gini impurity and entropy.

Gini Impurity
Gini impurity is the expected error rate if one of the results from a set is randomly
applied to one of the items in the set. If every item in the set is in the same category,
the guess will always be correct, so the error rate is 0. If there are four possible results
evenly divided in the group, there’s a 75 percent chance that the guess would be
incorrect, so the error rate is 0.75.

The function for Gini impurity looks like this:

Probability that a randomly placed item will
be in the wrong category
def giniimpurity(rows):
 total=len(rows)
 counts=uniquecounts(rows)
 imp=0
 for k1 in counts:
 p1=float(counts[k1])/total
 for k2 in counts:
 if k1==k2: continue
 p2=float(counts[k2])/total
 imp+=p1*p2
 return imp

This function calculates the probability of each possible outcome by dividing the
number of times that outcome occurs by the total number of rows in the set. It then
adds up the products of all these probabilities. This gives the overall chance that a

148 | Chapter 7: Modeling with Decision Trees

row would be randomly assigned to the wrong outcome. The higher this probability,
the worse the split. A probability of zero is great because it tells you that everything is
already in the right set.

Entropy
Entropy, in information theory, is the amount of disorder in a set—basically, how
mixed a set is. Add this function to treepredict.py:

Entropy is the sum of p(x)log(p(x)) across all
the different possible results
def entropy(rows):
 from math import log
 log2=lambda x:log(x)/log(2)
 results=uniquecounts(rows)
 # Now calculate the entropy
 ent=0.0
 for r in results.keys():
 p=float(results[r])/len(rows)
 ent=ent-p*log2(p)
 return ent

The entropy function calculates the frequency of each item (the number of times it
appears divided by the total number of rows), and applies these formulas:

p(i) = frequency(outcome) = count(outcome) / count(total rows)
Entropy = sum of p(i) x log(p(i)) for all outcomes

This is a measurement of how different the outcomes are from each other. If they’re
all the same (e.g., if you were really lucky and everyone became a premium sub-
scriber), then the entropy is 0. The more mixed up the groups are, the higher their
entropy. Our goal in dividing the data into two new groups is to reduce the entropy.

Try testing the Gini impurity and entropy metrics in your Python session:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.py'>
>>> treepredict.giniimpurity(treepredict.my_data)
0.6328125
>>> treepredict.entropy(treepredict.my_data)
1.5052408149441479
>>> set1,set2=treepredict.divideset(treepredict.my_data,2,'yes')
>>> treepredict.entropy(set1)
1.2987949406953985
>>> treepredict.giniimpurity(set1)
0.53125

The main difference between entropy and Gini impurity is that entropy peaks more
slowly. Consequently, it tends to penalize mixed sets a little more heavily. The rest of
this chapter will use entropy as the metric because it is used more commonly, but it’s
easy to swap it out for the Gini impurity.

Recursive Tree Building | 149

Recursive Tree Building
To see how good an attribute is, the algorithm first calculates the entropy of the
whole group. Then it tries dividing up the group by the possible values of each
attribute and calculates the entropy of the two new groups. To determine which
attribute is the best to divide on, the information gain is calculated. Information gain
is the difference between the current entropy and the weighted-average entropy of
the two new groups. The algorithm calculates the information gain for every
attribute and chooses the one with the highest information gain.

After the condition for the root node has been decided, the algorithm creates two
branches corresponding to true or false for that condition, as shown in Figure 7-2.

The observations are divided into those that meet the condition and those that don’t.
For each branch, the algorithm then determines if the branch can be divided further
or if it has reached a solid conclusion. If one of the new branches can be divided, the
same method as above is used to determine which variable to use. The second
division is shown in Figure 7-3.

The branches keep dividing, creating a tree by calculating the best attribute for each
new node. A branch stops dividing when the information gain from splitting a node
is not more than zero.

Create a new function called buildtree in treepredict.py. This is a recursive function
that builds the tree by choosing the best dividing criteria for the current set:

Figure 7-2. Decision tree after a single split

Figure 7-3. Decision tree after two splits

referrer = slashdot?

No Yes

Google,France,yes,23,Premium
Digg,USA,yes,24,Basic
kiwitobes,France,yes,23,Basic
Digg,USA,no,18,None

Slashdot,USA,yes,18,None
Slashdot,France,yes,19,None
Slashdot,UK,no,21,None

referrer = slashdot?

pages > 20? service = None

No Yes

No Yes

150 | Chapter 7: Modeling with Decision Trees

def buildtree(rows,scoref=entropy):
 if len(rows)==0: return decisionnode()
 current_score=scoref(rows)

 # Set up some variables to track the best criteria
 best_gain=0.0
 best_criteria=None
 best_sets=None

 column_count=len(rows[0])-1
 for col in range(0,column_count):
 # Generate the list of different values in
 # this column
 column_values={}
 for row in rows:
 column_values[row[col]]=1
 # Now try dividing the rows up for each value
 # in this column
 for value in column_values.keys():
 (set1,set2)=divideset(rows,col,value)

 # Information gain
 p=float(len(set1))/len(rows)
 gain=current_score-p*scoref(set1)-(1-p)*scoref(set2)
 if gain>best_gain and len(set1)>0 and len(set2)>0:
 best_gain=gain
 best_criteria=(col,value)
 best_sets=(set1,set2)
 # Create the subbranches
 if best_gain>0:
 trueBranch=buildtree(best_sets[0])
 falseBranch=buildtree(best_sets[1])
 return decisionnode(col=best_criteria[0],value=best_criteria[1],
 tb=trueBranch,fb=falseBranch)
 else:
 return decisionnode(results=uniquecounts(rows))

This function is first called with the list of rows. It loops through every column
(except the last one, which has the result in it), finds every possible value for that
column, and divides the dataset into two new subsets. It calculates the weighted-
average entropy for every pair of new subsets by multiplying each set’s entropy by
the fraction of the items that ended up in each set, and remembers which pair has the
lowest entropy.

If the best pair of subsets doesn’t have a lower weighted-average entropy than the
current set, that branch ends and the counts of the possible outcomes are stored.
Otherwise, buildtree is called on each set and they are added to the tree. The results
of the calls on each subset are attached to the True and False branches of the nodes,
eventually constructing an entire tree.

Displaying the Tree | 151

Now you can finally apply the algorithm to the original dataset. The code above is
flexible enough to handle both text and numeric data. It also assumes that the last
row is the target value, so you can simply pass the rows of data to build the tree:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.py'>
>>> tree=treepredict.buildtree(treepredict.my_data)

tree now holds a trained decision tree. In a moment you’ll learn how to look at the
tree, and later, how to use it to make predictions.

Displaying the Tree
So now that you have a tree, what should you do with it? Well, one thing you’ll
definitely want to do is look at it. printtree is a simple function for displaying the
tree in plain text. The output isn’t pretty, but it’s a simple way to view small trees:

def printtree(tree,indent=''):
 # Is this a leaf node?
 if tree.results!=None:
 print str(tree.results)
 else:
 # Print the criteria
 print str(tree.col)+':'+str(tree.value)+'? '

 # Print the branches
 print indent+'T->',
 printtree(tree.tb,indent+' ')
 print indent+'F->',
 printtree(tree.fb,indent+' ')

This is another recursive function. It takes a tree returned by buildtree and traverses
down it, and it knows it has reached the end of a branch when it reaches the node
with results. Until it reaches that point, it prints the criteria for the True and False
branches and calls printtree on each of them, each time increasing the indent string.

Call this function with the tree you just built, and you’ll get something like this:

>>> reload(treepredict)
>>> treepredict.printtree(tree)
0:google?
T-> 3:21?
 T-> {'Premium': 3}
 F-> 2:yes?
 T-> {'Basic': 1}
 F-> {'None': 1}
F-> 0:slashdot?
 T-> {'None': 3}
 F-> 2:yes?
 T-> {'Basic': 4}
 F-> 3:21?
 T-> {'Basic': 1}
 F-> {'None': 3}

152 | Chapter 7: Modeling with Decision Trees

This is a visual representation of the process that the decision tree will go through
when trying to make a new classification. The condition on the root node is “is
Google in column 0?” If this condition is met, it proceeds to the T-> branch and finds
that anyone referred from Google will become a paid subscriber if they have viewed
21 pages or more. If the condition is not met, it jumps to the F-> branch and evalu-
ates the condition “is Slashdot in column 0?” This continues until it reaches a branch
that has a result. As mentioned earlier, the ability to view the logic behind the rea-
soning process is one of the big advantages of decision trees.

Graphical Display
The textual display of the tree is fine for small trees, but as they get larger, visually
tracking your way through the tree can be quite difficult. Here you’ll see how to
make a graphical representation of the tree that will be useful for viewing trees you’ll
build in later sections.

The code for drawing the tree is similar to the code for drawing dendrograms in
Chapter 3. Both involve drawing a binary tree with nodes of arbitrary depth, so
you’ll first need functions to decide how much space a given node will take up—
both the total width of all its children and how deep the node goes, which tells you
much vertical space it will need for all its branches. The total width of a branch is the
combined width of its child branches, or 1 if it doesn’t have any child branches:

def getwidth(tree):
 if tree.tb==None and tree.fb==None: return 1
 return getwidth(tree.tb)+getwidth(tree.fb)

The depth of a branch is 1 plus the total depth of its longest child branch:

def getdepth(tree):
 if tree.tb==None and tree.fb==None: return 0
 return max(getdepth(tree.tb),getdepth(tree.fb))+1

To actually draw the tree, you’ll need to have the Python Imaging Library installed.
You can get this library from http://pythonware.com, and Appendix A has more infor-
mation on installing it. Add this import statement at the beginning of treepredict.py:

from PIL import Image,ImageDraw

The drawtree function determines the appropriate total size and sets up a canvas. It
then passes this canvas and the top node of the tree to drawnode. Add this function to
treepredict.py:

def drawtree(tree,jpeg='tree.jpg'):
 w=getwidth(tree)*100
 h=getdepth(tree)*100+120

 img=Image.new('RGB',(w,h),(255,255,255))
 draw=ImageDraw.Draw(img)

 drawnode(draw,tree,w/2,20)
 img.save(jpeg,'JPEG')

Classifying New Observations | 153

The drawnode function actually draws the decision nodes of the tree. It works recur-
sively, first drawing the current node and calculating the positions of the child nodes,
then calling drawnode on each of the child nodes. Add this function to treepredict.py:

def drawnode(draw,tree,x,y):
 if tree.results==None:
 # Get the width of each branch
 w1=getwidth(tree.fb)*100
 w2=getwidth(tree.tb)*100

 # Determine the total space required by this node
 left=x-(w1+w2)/2
 right=x+(w1+w2)/2

 # Draw the condition string
 draw.text((x-20,y-10),str(tree.col)+':'+str(tree.value),(0,0,0))

 # Draw links to the branches
 draw.line((x,y,left+w1/2,y+100),fill=(255,0,0))
 draw.line((x,y,right-w2/2,y+100),fill=(255,0,0))

 # Draw the branch nodes
 drawnode(draw,tree.fb,left+w1/2,y+100)
 drawnode(draw,tree.tb,right-w2/2,y+100)
 else:
 txt=' \n'.join(['%s:%d'%v for v in tree.results.items()])
 draw.text((x-20,y),txt,(0,0,0))

You can now try drawing the current tree in your Python session:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.pyc'>
>>> treepredict.drawtree(tree,jpeg='treeview.jpg')

This should produce a new file called treeview.jpg, which is shown in Figure 7-4.

The code does not print the True and False branch labels, and they would likely just
contribute to the clutter of larger diagrams. In the generated tree diagrams, the True
branch is always the righthand branch, so you can follow the reasoning process
through.

Classifying New Observations
Now you’ll need a function that takes a new observation and classifies it according to
the decision tree. Add this function to treepredict.py:

def classify(observation,tree):
 if tree.results!=None:
 return tree.results
 else:
 v=observation[tree.col]
 branch=None
 if isinstance(v,int) or isinstance(v,float):

154 | Chapter 7: Modeling with Decision Trees

 if v>=tree.value: branch=tree.tb
 else: branch=tree.fb
 else:
 if v==tree.value: branch=tree.tb
 else: branch=tree.fb
 return classify(observation,branch)

This function traverses the tree in much the same manner as printtree. After each
call, it checks to see if it has reached the end of this branch by looking for results. If
not, it evaluates the observation to see if the column matches the value. If it does, it
calls classify again on the True branch; if not, it calls classify on the False branch.

Now you can call classify to get the prediction for a new observation:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.pyc'>
>>> treepredict.classify(['(direct)','USA','yes',5],tree)
{'Basic': 4}

You now have functions for creating a decision tree from any dataset, for displaying
and interpreting the tree, and for classifying new results. These functions can be
applied to any dataset that consists of multiple rows, each containing a set of
observations and an outcome.

Pruning the Tree
One problem with training the tree using the methods described so far is that it can
become overfitted—that is, it can become too specific to the training data. An overfit-
ted tree may give an answer as being more certain than it really is by creating
branches that decrease entropy slightly for the training set, but whose conditions are
actually completely arbitrary.

Figure 7-4. Decision tree for predicting subscribers

0:google

0:slashdot 3:21

2:yes

3:21

None:3 2:yes Premium:3

Basic:4 None:1 Basic:1

None:3 Basic:1

Pruning the Tree | 155

Since the algorithm above continually splits the branches until it can’t reduce the
entropy any further, one possibility is to stop splitting when the entropy is not
reduced by a minimum amount. This strategy is employed frequently, but it suffers
from a minor drawback—it is possible to have a dataset where the entropy is not
reduced much by one split but is reduced greatly by subsequent splits. An alterna-
tive strategy is to build the entire tree as described earlier, and then try to eliminate
superfluous nodes. This process is known as pruning.

Pruning involves checking pairs of nodes that have a common parent to see if merg-
ing them would increase the entropy by less than a specified threshold. If so, the
leaves are merged into a single node with all the possible outcomes. This helps avoid
overfitting and stops the tree from making predictions that are more confident than
what can really be gleaned from the data.

Add a new function to treepredict.py for pruning the tree:

def prune(tree,mingain):
 # If the branches aren't leaves, then prune them
 if tree.tb.results==None:
 prune(tree.tb,mingain)
 if tree.fb.results==None:
 prune(tree.fb,mingain)

 # If both the subbranches are now leaves, see if they
 # should merged
 if tree.tb.results!=None and tree.fb.results!=None:
 # Build a combined dataset
 tb,fb=[],[]
 for v,c in tree.tb.results.items():
 tb+=[[v]]*c
 for v,c in tree.fb.results.items():
 fb+=[[v]]*c

 # Test the reduction in entropy
 delta=entropy(tb+fb)-(entropy(tb)+entropy(fb)/2)

Decision Trees in the Real World
Because decision trees are so easy to interpret, they are among the most widely used
data-mining methods in business analysis, medical decision-making, and policy-
making. Often, a decision tree is created automatically, and an expert uses it to under-
stand the key factors and then refines it to better match her beliefs. This process allows
machines to assist experts and to clearly show the reasoning process so that individuals
can judge the quality of the prediction.

Decision trees have been used in this manner for such wide-ranging applications as
customer profiling, financial risk analysis, assisted diagnosis, and traffic prediction.

156 | Chapter 7: Modeling with Decision Trees

 if delta<mingain:
 # Merge the branches
 tree.tb,tree.fb=None,None
 tree.results=uniquecounts(tb+fb)

When this function is called on the root node, it will traverse all the way down the
tree to the nodes that only have leaf nodes as children. It will create a combined list
of results from both of the leaves and will test the entropy. If the change in entropy is
less than the mingain parameter, the leaves will be deleted and all their results moved
to their parent node. The combined node then becomes a possible candidate for
deletion and merging with another node.

Try it on your current dataset to see if it merges any of the nodes:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.pyc'>
>>> treepredict.prune(tree,0.1)
>>> treepredict.printtree(tree)
0:google?
T-> 3:21?
 T-> {'Premium': 3}
 F-> 2:yes?
 T-> {'Basic': 1}
 F-> {'None': 1}
F-> 0:slashdot?
 T-> {'None': 3}
 F-> 2:yes?
 T-> {'Basic': 4}
 F-> 3:21?
 T-> {'Basic': 1}
 F-> {'None': 3}
>>> treepredict.prune(tree,1.0)
>>> treepredict.printtree(tree)
0:google?
T-> 3:21?
 T-> {'Premium': 3}
 F-> 2:yes?
 T-> {'Basic': 1}
 F-> {'None': 1}
F-> {'None': 6, 'Basic': 5}

In the example, the data divides quite easily, so pruning with a reasonable minimum
gain doesn’t really do anything. Only when the minimum gain is turned up very high
does one of the leaves get merged. As you’ll see later, real datasets tend not to break
as cleanly as this one does, so pruning is much more effective in those cases.

Dealing with Missing Data
Another advantage of decision trees is their ability to deal with missing data. Your
dataset may be missing some piece of information—in the current example, for
instance, the geographical location of a user may not be discernable from her IP

Dealing with Missing Data | 157

address, so the field may be blank. To adapt the decision tree to handle this, you’ll
need to implement a different prediction function.

If you are missing a piece of data that is required to decide which branch of the tree
to follow, you can actually follow both branches. However, instead of counting the
results equally, the results from either side are weighted. In the basic decision tree,
everything has an implied weight of 1, meaning that the observations count fully for
the probability that an item fits into a certain category. If you are following multiple
branches instead, you can give each branch a weight equal to the fraction of all the
other rows that are on that side.

The function for doing this, mdclassify, is a simple modification of classify. Add it
to treepredict.py:

def mdclassify(observation,tree):
 if tree.results!=None:
 return tree.results
 else:
 v=observation[tree.col]
 if v==None:
 tr,fr=mdclassify(observation,tree.tb),mdclassify(observation,tree.fb)
 tcount=sum(tr.values())
 fcount=sum(fr.values())
 tw=float(tcount)/(tcount+fcount)
 fw=float(fcount)/(tcount+fcount)
 result={}
 for k,v in tr.items(): result[k]=v*tw
 for k,v in fr.items(): result[k]=v*fw
 return result
 else:
 if isinstance(v,int) or isinstance(v,float):
 if v>=tree.value: branch=tree.tb
 else: branch=tree.fb
 else:
 if v==tree.value: branch=tree.tb
 else: branch=tree.fb
 return mdclassify(observation,branch)

The only difference is at the end where, if the important piece of data is missing, the
results for each branch are calculated and then combined with their respective
weightings.

Try out mdclassify on a row with a crucial piece of information missing and see how
your results look:

>>> reload(treepredict)
<module 'treepredict' from 'treepredict.py'>
>>> treepredict.mdclassify(['google',None,'yes',None],tree)
{'Premium': 1.5, 'Basic': 1.5}
>>> treepredict2.mdclassify(['google','France',None,None],tree)
{'None': 0.125, 'Premium': 2.25, 'Basic': 0.125}

158 | Chapter 7: Modeling with Decision Trees

As expected, leaving out the Pages variable returns a strong chance of Premium and a
slight chance of Basic. Leaving out the Read FAQ variable yields a different distribu-
tion, with each possibility in the end weighted by how many items were placed on
each side.

Dealing with Numerical Outcomes
The user behavior example and the fruit tree were both classification problems, since
the outcomes were categories rather than numbers. The remaining examples in this
chapter, home prices and hotness, are both problems with numerical outcomes.

While it’s possible to run buildtree on a dataset with numbers as outcomes, the
result probably won’t be very good. If all the numbers are treated as different catego-
ries, the algorithm won’t take into account the fact that some numbers are close
together and others are far apart; they will all be treated as completely separate. To
deal with this, when you have a tree with numerical outcomes, you can use variance
as a scoring function instead of entropy or Gini impurity. Add the variance function
to treepredict.py:

def variance(rows):
 if len(rows)==0: return 0
 data=[float(row[len(row)-1]) for row in rows]
 mean=sum(data)/len(data)
 variance=sum([(d-mean)**2 for d in data])/len(data)
 return variance

This function is a possible parameter for buildtree, and it calculates the statistical
variance for a set of rows. A low variance means that the numbers are all very close
together, and a high variance means that they are widely dispersed. When building a
tree using variance as the scoring function, node criteria will be picked that split the
numbers so that higher values are on one side and lower values are on the other.
Splitting the data this way reduces the overall variance on the branches.

Modeling Home Prices
There are many potential uses for decision trees, but they are most useful when there
are several possible variables and you’re interested in the reasoning process. In some
cases, you already know the outcomes, and the interesting part is modeling the
outcomes to understand why they are as they are. One area in which this is
potentially very interesting is understanding prices of goods, particularly those that
have a lot of variability in measurable ways. This section will look at building deci-
sion trees for modeling real estate prices, because houses vary greatly in price and
have many numerical and nominal variables that are easily measured.

Modeling Home Prices | 159

The Zillow API
Zillow is a free web service that tracks real estate prices and uses this information to
create price estimates for other houses. It works by looking at comps (similar houses)
and using their values to predict a new value, which is similar to what real estate
appraisers do. A section of a Zillow web page showing information about a house
and its estimate value is shown in Figure 7-5.

Fortunately, Zillow also has an API that lets you get details and the estimated value
of houses. The page for the Zillow API is http://www.zillow.com/howto/api/
APIOverview.htm.

You’ll need to get a developer key to access the API, which is free and available from
the web site. The API itself is quite simple—it involves requesting a URL with all your
search parameters in the query, and then parsing the returned XML to get details like
number of bedrooms and estimated price. Create a new file called zillow.py and add
the following code:

import xml.dom.minidom
import urllib2

zwskey="X1-ZWz1chwxis15aj_9skq6"

As you did in Chapter 5, you’re going to use the minidom API to parse XML results
of your queries. The function getaddressdata takes an address and a city, and con-
structs the URL to query Zillow for property information. It parses the results and

Figure 7-5. Screenshot from zillow.com

160 | Chapter 7: Modeling with Decision Trees

extracts the important information, which it returns as a tuple of results. Add this
function to zillow.py:

def getaddressdata(address,city):
 escad=address.replace(' ','+')

 # Construct the URL
 url='http://www.zillow.com/webservice/GetDeepSearchResults.htm?'
 url+='zws-id=%s&address=%s&citystatezip=%s' % (zwskey,escad,city)

 # Parse resulting XML
 doc=xml.dom.minidom.parseString(urllib2.urlopen(url).read())
 code=doc.getElementsByTagName('code')[0].firstChild.data

 # Code 0 means success; otherwise, there was an error
 if code!='0': return None

 # Extract the info about this property
 try:
 zipcode=doc.getElementsByTagName('zipcode')[0].firstChild.data
 use=doc.getElementsByTagName('useCode')[0].firstChild.data
 year=doc.getElementsByTagName('yearBuilt')[0].firstChild.data
 bath=doc.getElementsByTagName('bathrooms')[0].firstChild.data
 bed=doc.getElementsByTagName('bedrooms')[0].firstChild.data
 rooms=doc.getElementsByTagName('totalRooms')[0].firstChild.data
 price=doc.getElementsByTagName('amount')[0].firstChild.data
 except:
 return None

 return (zipcode,use,int(year),float(bath),int(bed),int(rooms),price)

The tuple returned by this function is suitable to put in a list as an observation, since
the “result,” the price bucket, is at the end. To use this function to generate an entire
dataset, you’ll need a list of addresses. You can generate this yourself or download a
list of randomly generated addresses in Cambridge, MA at http://kiwitobes.com/
addresslist.txt.

Create a new function called getpricelist to read this file and generate a list of data:

def getpricelist():
 l1=[]
 for line in file('addresslist.txt'):
 data=getaddressdata(line.strip(),'Cambridge,MA')
 l1.append(data)
 return l1

You can now use these functions to generate a dataset and build a decision tree. Try
this in your Python session:

>>> import zillow
>>> housedata=zillow.getpricelist()
>>> reload(treepredict)
>>> housetree=treepredict.buildtree(housedata,scoref=treepredict.variance)
>>> treepredict.drawtree(housetree,'housetree.jpg')

Modeling “Hotness” | 161

One possible generated file, housetree.jpg, is shown in Figure 7-6.

Of course, if you were only interested in guessing the price of particular property,
you could just use the Zillow API to get an estimate. What’s interesting here is that
you actually built a model of the factors to be considered in determining housing
prices. Notice that the top of the tree is Bathrooms, which means that you reduce the
variance the most by dividing the dataset on the total number of bathrooms. The
main deciding factor in the price of a house in Cambridge is whether or not it has
three or more bathrooms (usually this indicates that the property is a large
multifamily house).

The obvious downside of using a decision tree here is that it’s necessary to create
buckets of price data, since they’re all different and have to be grouped in some way
to create useful endpoints. It’s possible that a different prediction technique would
have worked better on the actual price data. Chapter 8 discusses a different method
for making price predictions.

Modeling “Hotness”
Hot or Not is a site that allows users to upload photos of themselves. Its original con-
cept was to let users rank other users on their physical appearance, and to aggregate
the results to create a score between 1 and 10 for each person. It has since evolved
into a dating site, and now has an open API that allows you to get demographic
information about members along with their “hotness” rating. This makes it an
interesting test case for a decision tree model because there is a set of input vari-
ables, an output variable, and a possibly interesting reasoning process. The site itself
is also a good example of what might be considered collective intelligence.

Again, you’ll need to get an application key to access the API. You can sign up and
get one at http://dev.hotornot.com/signup.

Figure 7-6. Decision tree for house prices

3:3:0

2:1900 2:1903

0:02139 0:02138 1:Duplex 1:Triplex

etc.

162 | Chapter 7: Modeling with Decision Trees

The Hot or Not API works in much the same way as the other APIs that have been
covered. You simply pass the parameters of a query to a URL and parse the XML
that is returned. To get started, create a new file called hotornot.py and add the
import statements and your key definition:

import urllib2
import xml.dom.minidom

api_key="479NUNJHETN"

Next, get a list of random people to make up the dataset. Fortunately, Hot or Not
provides an API call that returns a list of people with specified criteria. In this exam-
ple, the only criteria will be that the people have “meet me” profiles, since only from
these profiles can you get other information like location and interests. Add this
function to hotornot.py:

def getrandomratings(c):
 # Construct URL for getRandomProfile
 url="http://services.hotornot.com/rest/?app_key=%s" % api_key
 url+="&method=Rate.getRandomProfile&retrieve_num=%d" % c
 url+="&get_rate_info=true&meet_users_only=true"

 f1=urllib2.urlopen(url).read()

 doc=xml.dom.minidom.parseString(f1)

 emids=doc.getElementsByTagName('emid')
 ratings=doc.getElementsByTagName('rating')

 # Combine the emids and ratings together into a list
 result=[]
 for e,r in zip(emids,ratings):
 if r.firstChild!=None:
 result.append((e.firstChild.data,r.firstChild.data))
 return result

Once you’ve generated a list of user IDs and ratings, you’ll need another function to
download information about people—in this case, gender, age, location, and key-
words. Having all 50 states as possible location variables will lead to too many
branching possibilities. In order to reduce the number of possibilities for location,
you can divide the states into regions. Add the following code to specify regions:

stateregions={'New England':['ct','mn','ma','nh','ri','vt'],
 'Mid Atlantic':['de','md','nj','ny','pa'],
 'South':['al','ak','fl','ga','ky','la','ms','mo',
 'nc','sc','tn','va','wv'],
 'Midwest':['il','in','ia','ks','mi','ne','nd','oh','sd','wi'],
 'West':['ak','ca','co','hi','id','mt','nv','or','ut','wa','wy']}

The API provides a method to download demographic data for individuals, so the
function getpeopledata just loops through all the results of the first search and
queries the API for their details. Add this function to hotornot.py:

Modeling “Hotness” | 163

def getpeopledata(ratings):
 result=[]
 for emid,rating in ratings:
 # URL for the MeetMe.getProfile method
 url="http://services.hotornot.com/rest/?app_key=%s" % api_key
 url+="&method=MeetMe.getProfile&emid=%s&get_keywords=true" % emid

 # Get all the info about this person
 try:
 rating=int(float(rating)+0.5)
 doc2=xml.dom.minidom.parseString(urllib2.urlopen(url).read())
 gender=doc2.getElementsByTagName('gender')[0].firstChild.data
 age=doc2.getElementsByTagName('age')[0].firstChild.data
 loc=doc2.getElementsByTagName('location')[0].firstChild.data[0:2]

 # Convert state to region
 for r,s in stateregions.items():
 if loc in s: region=r

 if region!=None:
 result.append((gender,int(age),region,rating))
 except:
 pass
 return result

You can now import this module into your Python session and generate a dataset:

>>> import hotornot
>>> l1=hotornot.getrandomratings(500)
>>> len(l1)
442
>>> pdata=hotornot.getpeopledata(l1)
>>> pdata[0]
(u'female', 28, 'West', 9)

The list contains information about each user with their rating as the last field. This
data structure can be passed directly to the buildtree method to build a tree:

>>> hottree=treepredict.buildtree(pdata,scoref=treepredict.variance)
>>> treepredict.prune(hottree,0.5)
>>> treepredict.drawtree(hottree,'hottree.jpg')

A possible output for the final tree is shown in Figure 7-7.

The central node at the top that divides the dataset the best is gender. The remain-
der of the tree is actually quite complicated and difficult to read. However, you can
certainly use it to make predictions about previously unseen people. Also, because
the algorithms support missing data, you can aggregate people across large vari-
ables. For example, maybe you want to compare the hotness of everyone in the
South against everyone in the Mid-Atlantic:

>>> south=treepredict2.mdclassify((None,None,'South'),hottree)
>>> midat=treepredict2.mdclassify((None,None,'Mid Atlantic'),hottree)

164 | Chapter 7: Modeling with Decision Trees

>>> south[10]/sum(south.values())
0.055820815183261735
>>> midat[10]/sum(midat.values())
0.048972797320600864

For this dataset, there are slightly more super-hot people in the South. You can try
other things like considering age groups, or testing whether men get better scores
than women.

When to Use Decision Trees
Probably the biggest advantage of decision trees is how easy it is to interpret a trained
model. After running the algorithm on our example problem, we not only end up
with a tree that can make predictions about new users, we also get the list of ques-
tions used to make those determinations. From this you can see that, for instance,
users who find the site through Slashdot never become paid subscribers, but users
who find the site through Google and view at least 20 pages are likely to become
premium subscribers. This, in turn, might allow you to alter your advertising strategy
to target sites that give you the highest quality traffic. We also learn that certain
variables, such as the user’s country of origin, are not important in determining the
outcome. If data is difficult or expensive to collect and we learn that it is not impor-
tant, we know that we can stop collecting it.

Unlike some other machine-learning algorithms, decision trees can work with both
categorical and numerical data as inputs. In the first example problem, we used a
combination of pages viewed with several categorical inputs. Furthermore, while
many algorithms require you to prepare or normalize data before you can run them,
the code in this chapter will take any list of data containing category or numerical
data and build the appropriate decision tree.

Figure 7-7. Decision tree model of hotness

1:22

2:New England 2:New England

0:male 9.5 6.2 1:23 1:34

etc.

Exercises | 165

Decision trees also allow for probabilistic assignment of data. With some problems,
there is not enough information to always make a correct distinction—a decision
tree may have a node that has several possibilities and can’t be divided any more.
The code in this chapter returns a dictionary of the counts of different outcomes, and
this information can help us decide how confident we are in the results. Not all
algorithms can estimate the probability of an uncertain result.

However, there are definitely drawbacks to the decision tree algorithm used here.
While it can be very effective for problems with only a few possible results, it can’t be
used effectively on datasets with many possibilities. In the first example, the only
outcomes are none, basic, and premium. If there were hundreds of outcomes
instead, the decision tree would grow very complicated and would probably make
poor predictions.

The other big disadvantage of the decision trees described here is that while they can
handle simple numerical data, they can only create greater-than/less-than decision
points. This makes it difficult for decision trees to classify data where the class is
determined by a more complex combination of the variables. For instance, if the
results were determined by the differences of two variables, the tree would get very
large and would quickly become inaccurate.

In sum, decision trees are probably not a good choice for problems with many
numerical inputs and outputs, or with many complex relationships between numeri-
cal inputs, such as in interpreting financial data or image analysis. Decision trees are
great for datasets with a lot of categorical data and numerical data that has break-
points. These trees are the best choice if understanding the decision-making process
is important; as you’ve observed, seeing the reasoning can be as important as
knowing the final prediction.

Exercises
1. Result probabilities. Currently, the classify and mdclassify functions give their

results as total counts. Modify them to give the probabilities of the results being
one of the categories.

2. Missing data ranges. mdclassify allows the use of “None” to specify a missing
value. For numerical values the result may not be completely unknown, but may
be known to be in a range. Modify mdclassify to allow a tuple such as (20,25) in
place of a value and traverse down both branches when necessary.

3. Early stopping. Rather than pruning the tree, buildtree can just stop dividing
when it reaches a point where the entropy is not reduced enough. This may not
be ideal in some cases, but it does save an extra step. Modify buildtree to take a
minimum gain parameter and stop dividing the branch if this condition is not
met.

166 | Chapter 7: Modeling with Decision Trees

4. Building with missing data. You built a function that can classify a row with miss-
ing data, but what if there is missing data in the training set? Modify buildtree
so that it will check for missing data and, in cases where it’s not possible to send
a result down a particular branch, will send it down both branches.

5. Multiway splits. (Hard) All the trees built in this chapter are binary decision
trees. However, some datasets might create simpler trees if they allowed a node
to split into more than two branches. How would you represent this? How
would you train the tree?

