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Genetic programming

◼ Application of Genetic Algorithm to the case where 

solution space consists of computer programs

◼ The goal is to find a program which performs well at a

predefined task

❑ Instead of choosing an algorithm that is the best for a

predefined task, we make a program that will create 

such algorithm: we design an algorithm which creates 

algorithms

◼ In some cases the algorithm finds programs that are

human-competitive

"Human-competitive results produced by genetic programming"

http://www.genetic-programming.com/GPEM2010article.pdf


How does it work

◼ We start with a large set of programs (population), which 

are either [randomly generated] or [hand-designed to be 

somewhat good solutions] 

◼ The programs then compete in performing some user-

defined task:

❑ A game in which the programs compete against each 

other and the performance is measured by the number 

of wins

❑ A known set of inputs and outputs and the best 

program (function) perfectly maps inputs to outputs
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Same steps as in GA

◼ After evaluating each program using the fitness test, we 

produce a ranked list of programs

◼ The best programs are replicated and modified in two 

different ways

❑ Mutation: certain parts of a program are altered 

slightly in a random manner in hope that this will make 

a good solution even better 

❑ Crossover (breeding): exchange the portions of best 

programs 

◼ This replication and modification procedure creates 

many new programs which are evaluated until the best 

solution is found



Programs get better with each new 

generation
◼ Since the size of the population is kept constant, many of 

the worst programs are eliminated from the population to 

make room for new programs 

◼ The new population is referred to as “the next 

generation” 

◼ Because the best programs are being kept and only 

slightly modified, it is expected that with each generation 

they will get better and better



When to stop evolving

◼ New generations are created until a termination 

condition is reached:

❑ The perfect solution is found

❑ A good enough solution is found

❑ The solution did not improve for several generations

❑ The number of generations reached a specified limit



Genetic Programming (GP) vs. 

Genetic Algorithm (GA)

◼ GA is an optimization technique 

❑ As with any optimization, you have already selected 

an algorithm or metric and you’re trying to find the best 

parameters for it

◼ In GP the solutions are not just a best set of parameters 

applied to a given algorithm: 

❑ The algorithm itself and all its parameters are 

designed automatically by means of evolutionary 

pressure



Representing a solution

◼ We need to create an input for GP

◼ The input is a population of programs

◼ How do we represent programs?

❑ The most commonly used is a tree representation

❑ Representing programs as trees is natural, because 

programs in most programming languages, when 

compiled or interpreted, are first turned into a parse 

tree



Sample program tree

◼ Each non-leaf node represents an operator applied to its child nodes 

◼ Each leaf node represents an operand (variable parameter or a constant 

value)

◼ Once a leaf node is evaluated, it is given to the node above it, which applies 

its operator to its branches

◼ The “if” operator has 3 child branches: if leftmost branch evaluates to true, 

return the center branch; if it doesn’t, return the rightmost branch.

if

> -

x 3 y 5 y 2

+

What is the program?



Sample program tree

def func(x,y)

if x>3:

return y + 5

else:

return y - 2

if

> -

x 3 y 5 y 2

+



Initializing program population

◼ It’s possible to hand-create initial population, but most of 

the time the initial population is a set of random 

programs 

◼ This makes the process easier to start, since it’s not 

necessary to design several programs that almost solve 

a problem 

◼ It also creates much more diversity—if initial programs 

are designed by a single programmer they are likely to 

be very similar, and although they may give answers that 

are almost correct, the ideal solution may look quite 

different



Define basic function types 

addw=fwrapper(lambda l:l[0]+l[1],2,'add’)

subw=fwrapper(lambda l:l[0]-l[1],2,'subtract’)

mulw=fwrapper(lambda l:l[0]*l[1],2,'multiply')

ifw=fwrapper(lambda l:  l[1] if l[0]>0 else l[2],3,'if')

gtw=fwrapper(lambda l: 1 if l[0]>l[1] else 0,2,'isgreater')

class fwrapper:

def __init__(self,function,childcount,name):

self.function=function

self.childcount=childcount

self.name=name



Also define Node classes to connect 

functions into a tree
class node:

def __init__(self,fw,children):

self.function=fw.function

self.name=fw.name

self.children=children

def evaluate(self,inp):

results=[n.evaluate(inp) for n in self.children]

return self.function(results)

def display(self,indent=0):

print ((' '*indent)+self.name)

for c in self.children:

c.display(indent+4)

class paramnode:

…

class constnode:

…



Making a random program tree

◼ Creating a random program consists of creating a root 

node with a random associated operator and then 

creating as many random child nodes as necessary, 

which in turn may have their own associated random 

child nodes 

◼ Like most functions that work with trees, this is easily 

defined recursively

See make_random_tree() in gp.py



The way to generate solutions
Try this:

>>> from gp import *

>>> t = exampletree()
>>> t.display()
if

isgreater
p0
3

add
p1
5

subtract
p1
2

>>>

>>> rtree = make_random_tree(2)
>>> rtree.display()
multiply

add
0
10

add
add

add
p0
p1

if
p0
p0
6

3

The tree from the 

example
Random tree



Evaluating solutions

◼ We can now build programs automatically

◼ Generating random programs until one is correct would 

be ridiculously impractical because there are infinite 

possible programs 

◼ How do we test a solution to see if it’s correct, and if it’s 

not, how do we determine how close it is?



Dataset generated by an unknown 

program

x y output

4 2 10

2 3 7

5 1 11

◼ Can you guess which function was used to generate the 

data?

◼ Guessing the function which describes relationship 

between attributes and the numeric value is the task of 

regression

◼ We will use GP to find the best function



Fitness function

◼ Our fitness function will check every row in the dataset, 

calculating the output from a given candidate function 

and comparing it to the real result

◼ It will add up all the differences, giving lower values for 

better programs—a return value of 0 indicates that the 

function got every result correct

◼ Since we only generated a few random programs, the 

chance that one of them is actually the correct function is 

vanishingly small 

◼ But now we have a way to evaluate how close we are to 

predicting a mathematical function, which is important for 

deciding which programs make it to the next generation



Mutating programs

◼ Mutation takes a single program and alters it slightly 

◼ The programs can be altered in different ways:

❑ Changing the operator on a node 

❑ Replacing a subtree with a completely new subtree



Mutation by changing node functions

if

> -

x 3 y 5 y 2

+

+

-

y 5 y 2

+

original

mutated



Mutation by replacing a subtree

if

> -

x 3 y 5 y 2

+

original

if

> *

x 3 y 5 x y

+

mutated



Implementing program mutations

◼ For simplicity, only the second type of mutations is 

implemented

◼ The mutate() function begins at the top of the tree and 

decides whether the node should be altered (according to 

mutation probability): 

❑ If yes, current node will be replaced with a random

program

❑ If not, it continues traversing the tree and calls mutate

on each child 

◼ It’s possible that the entire tree will be mutated, and it’s 

also possible to traverse the entire tree without changing it



Mutations are random and not 

necessarily beneficial

◼ The mutations are random, and they aren’t directed 

toward improving the solution 

◼ The hope is simply that some small changes will improve 

the result

◼ These changes will survive, and over several 

generations the best solution will eventually be found



Breeding programs

◼ Crossover (breeding) is implemented as combining two 

most successful programs to create a new program, 

usually by replacing a subtree from one with a subtree 

from another

◼ The crossover() function takes two trees as inputs and 

traverses both of them simultaneously

◼ If a threshold (crossover probability) is reached, the 

function returns a copy of the first tree with one of its 

branches replaced by a branch in the second tree

◼ By traversing both trees at once, the crossover happens 

at approximately the same level on each tree



Breeding programs

if

-

y 5 y 2

+

Parent 1 +

*

x y x y

>

Parent 2

if

*

y 5 x y

+

Offspring



Finding the best program tree 

that describes the data

◼ Armed with a measure of success and two methods of 

modifying the best programs, we’re ready to set up a 

competitive environment in which programs can evolve



Testing GP

def hidden_function(x,y):

return x**2+2*y+3*x+5

◼ We know what function was used to generate the 

dataset

◼ The real test is whether genetic programming can 

reproduce it without being told

◼ Run gp.py to see if the random population of programs 

can evolve into a target function that best describes the 

relationship between input and output in the dataset



Evolution in action
…
generation 19 , score = 400
generation 20 , score = 200
generation 21 , score = 200
generation 22 , score = 200
generation 23 , score = 200
generation 24 , score = 0
add

multiply
p0
p0

add
add

p1
5

add
p1
multiply

p0
3

def hidden_function(x,y):

return x**2+2*y+3*x+5

◼ The result may look more 

complex than the target 

function, but it is the same 

function!



The danger of inbreeding

◼ The evolve() function ranks the programs in each 

generation from best to worst, so it might be tempting to 

just take 2-3 programs at the top and replicate and 

modify them for the new population 

❑ After all, why would you bother allowing anything less than the 

best to continue?

◼ The problem is that choosing only top solutions quickly 

makes the population extremely homogeneous (or 

inbred): the programs converge to the same set

◼ This again is a local minima problem: a state that is good 

but not quite good enough, and one in which small 

changes won’t improve the result



Adding diversity in each generation

◼ The evolve() function has 2 parameters which combat 

inbreeding:

◼ pexp - the probability of selecting lower-ranked programs 

❑ A higher value makes the selection process more 

stringent, choosing only programs with the best ranks 

to replicate

❑ By lowering the value, you allow weaker solutions -

turning the process from “survival of the fittest” to 

“survival of the fittest and luckiest”

◼ pnew - the probability that a completely new, random 

program is introduced



Successes of GP

◼ Designing antennas for NASA

◼ Developing programs for playing games, 

such as chess and backgammon 

◼ Used in photonic crystals, optics, quantum 

computing systems, and other scientific 

inventions 

◼ In 1998 a robot team that was 

programmed entirely using genetic 

programming which placed well in the 

Robo-Cup soccer contest

Automatic antenna design with evolutionary algorithms

https://ti.arc.nasa.gov/m/pub-archive/1244h/1244%20(Hornby).pdf

