
250

Chapter 11CHAPTER 11

Evolving Intelligence 11

Throughout this book you’ve seen a number of different problems, and in each case
you used an algorithm that was suited to solve that particular problem. In some of
the examples, you had to tweak the parameters or use optimization to search for a
good set of parameters. This chapter will look at a different way to approach
problems. Instead of choosing an algorithm to apply to a problem, you’ll make a
program that attempts to automatically build the best program to solve a problem.
Essentially, you’ll be creating an algorithm that creates algorithms.

To do this, you will use a technique called genetic programming. Since this is the last
chapter in which you’ll learn a completely new type of algorithm, I’ve picked a topic
that is new, exciting, and being actively researched. This chapter is a little different
from the others because it doesn’t use any open APIs or public datasets, and because
programs that can modify themselves based on their interactions with many people
are an interesting and different kind of collective intelligence. Genetic programming
is a very large topic about which many books have been written, so you’ll only get an
introduction here, but I hope it’s enough to get you excited about the possibilities
and perhaps to research and experiment on your own.

The two problems in this chapter are recreating a mathematical function given a
dataset, and automatically creating an AI (artificial intelligence) player for a simple
board game. This is just a very small sampling of the possibilities of genetic
programming—computational power is really the only constraint on the types of
problems it can be used to solve.

What Is Genetic Programming?
Genetic programming is a machine-learning technique inspired by the theory of bio-
logical evolution. It generally works by starting with a large set of programs (referred
to as the population), which are either randomly generated or hand-designed and are
known to be somewhat good solutions. The programs are then made to compete in
some user-defined task. This may be a game in which the programs compete against

What Is Genetic Programming? | 251

each other directly, or it may be an individual test to see which program performs
better. After the competition, a ranked list of the programs from best to worst can be
determined.

Next—and here’s where evolution comes in—the best programs are replicated and
modified in two different ways. The simpler way is mutation, in which certain parts
of the program are altered very slightly in a random manner in the hope that this will
make a good solution even better. The other way to modify a program is through
crossover (sometimes referred to as breeding), which involves taking a portion of one
of the best programs and replacing it with a portion of one of the other best pro-
grams. This replication and modification procedure creates many new programs that
are based on, but different from, the best programs.

At each stage, the quality of the programs is calculated using a fitness function. Since
the size of the population is kept constant, many of the worst programs are elimi-
nated from the population to make room for the new programs. The new popula-
tion is referred to as “the next generation,” and the whole procedure is then
repeated. Because the best programs are being kept and modified, it is expected that
with each generation they will get better and better, in much the same way that teen-
agers can be smarter than their parents.

New generations are created until a termination condition is reached, which,
depending on the problem, can be that:

• The perfect solution has been found.

• A good enough solution has been found.

• The solution has not improved for several generations.

• The number of generations has reached a specified limit.

For some problems, such as determining a mathematical function that correctly
maps a set of inputs to an output, a perfect solution is possible. For others, such as a
board game, there may not be a perfect solution, since the quality of a solution
depends on the strategy of the program’s adversary.

An overview of the genetic programming process is shown as a flowchart in
Figure 11-1.

Genetic Programming Versus Genetic Algorithms
Chapter 5 introduced a related set of algorithms known as genetic algorithms.
Genetic algorithms are an optimization technique that use the idea of evolutionary
pressure to choose the best result. With any form of optimization, you have already
selected an algorithm or metric and you’re simply trying to find the best parameters
for it.

252 | Chapter 11: Evolving Intelligence

Like optimization, genetic programming requires a way to measure how good a solu-
tion is; but unlike optimization, the solutions are not just a set of parameters being
applied to a given algorithm. Instead, the algorithm itself and all its parameters are
designed automatically by means of evolutionary pressure.

Figure 11-1. Genetic programming overview

Successes of Genetic Programming
Genetic programming has been around since the 1980s, but it is very computationally
intensive, and with the computing power that was available at the time, it couldn’t be
used for anything more than simple problems. As computers have gotten faster, how-
ever, people have been able to apply genetic programming to sophisticated problems.
Many previously patented inventions have been rediscovered or improved using
genetic programming, and recently several new patentable inventions have been
designed by computers.

The genetic programming technique has been applied in designing antennas for NASA,
and in photonic crystals, optics, quantum computing systems, and other scientific
inventions. It has also been used to develop programs for playing many games, such as
chess and backgammon. In 1998, researchers from Carnegie Mellon University entered
a robot team that was programmed entirely using genetic programming into the Robo-
Cup soccer contest, and placed in the middle of the pack.

Create random population

Rank individuals

Are any of them
good enough?

No

Yes
Done

Duplicate best individuals

Mutate Breed

New population

Programs As Trees | 253

Programs As Trees
In order to create programs that can be tested, mutated, and bred, you’ll need a way
to represent and run them from within your Python code. The representation has to
lend itself to easy modification and, more importantly, has to be guaranteed to be an
actual program—which means generating random strings and trying to treat them as
Python code won’t work. Researchers have come up with a few different ways to
represent programs for genetic programming, and the most commonly used is a tree
representation.

Most programming languages, when compiled or interpreted, are first turned into a
parse tree, which is very similar to what you’ll be working with here. (The program-
ming language Lisp and its variants are essentially ways of entering a parse tree
directly.) An example of a parse tree is shown in Figure 11-2.

Each node represents either an operation on its child nodes or an endpoint, such as a
parameter with a constant value. For example, the circular node is a sum operation
on its two branches, in this case, the values Y and 5. Once this point is evaluated, it
is given to the node above it, which in turn applies its own operation to its branches.
You’ll also notice that one of the nodes has the operation “if,” which specifies that if
its leftmost branch evaluates to true, return its center branch; if it doesn’t, return its
rightmost branch.

Traversing the complete tree, you can see that it corresponds to the Python function:

def func(x,y)
 if x>3:
 return y + 5
 else:
 return y - 2

At first, it might appear that these trees can only be used to build very simple
functions. There are two things to consider here—first, the nodes that compose the
tree can potentially be very complex functions, such as distance measures or

Figure 11-2. Example program tree

if

> –

Y 2X 3

+

Y 5

254 | Chapter 11: Evolving Intelligence

Gaussians. The second thing is that trees can be made recursive by referring to nodes
higher up in the tree. Creating trees like this allows for loops and other more compli-
cated control structures.

Representing Trees in Python
You’re now ready to construct tree programs in Python. The trees are made up of
nodes, which, depending on the functions associated with them, have some number
of child nodes. Some of the nodes will return parameters passed to the program, oth-
ers will return constants, and the most interesting ones will return operations on
their child nodes.

Create a new file called gp.py and create four new classes called fwrapper, node,
paramnode, and constnode:

from random import random,randint,choice
from copy import deepcopy
from math import log

class fwrapper:
 def __init_ _(self,function,childcount,name):
 self.function=function
 self.childcount=childcount
 self.name=name

class node:
 def __init_ _(self,fw,children):
 self.function=fw.function
 self.name=fw.name
 self.children=children

 def evaluate(self,inp):
 results=[n.evaluate(inp) for n in self.children]
 return self.function(results)

class paramnode:
 def __init_ _(self,idx):
 self.idx=idx

 def evaluate(self,inp):
 return inp[self.idx]

class constnode:
 def __init_ _(self,v):
 self.v=v
 def evaluate(self,inp):
 return self.v

Programs As Trees | 255

The classes here are:

fwrapper
A wrapper for the functions that will be used on function nodes. Its member
variables are the name of the function, the function itself, and the number of
parameters it takes.

node
The class for function nodes (nodes with children). This is initialized with an
fwrapper. When evaluate is called, it evaluates the child nodes and then applies
the function to their results.

paramnode
The class for nodes that only return one of the parameters passed to the program.
Its evaluate method returns the parameter specified by idx.

constnode
Nodes that return a constant value. The evaluate method simply returns the
value with which it was initialized.

You’ll also want some functions for the nodes to apply. To do this, you have to cre-
ate functions and then give them names and parameter counts using fwrapper. Add
this list of functions to gp.py:

addw=fwrapper(lambda l:l[0]+l[1],2,'add')
subw=fwrapper(lambda l:l[0]-l[1],2,'subtract')
mulw=fwrapper(lambda l:l[0]*l[1],2,'multiply')

def iffunc(l):
 if l[0]>0: return l[1]
 else: return l[2]
ifw=fwrapper(iffunc,3,'if')

def isgreater(l):
 if l[0]>l[1]: return 1
 else: return 0
gtw=fwrapper(isgreater,2,'isgreater')

flist=[addw,mulw,ifw,gtw,subw]

Some of the simpler functions such as add and subtract can be defined inline using
lambda, while others require you to define the function in a separate block. In each
case, they have been wrapped in an fwrapper with their names and the number of
parameters required. The last line creates a list of all the functions so that later they
can easily be chosen at random.

Building and Evaluating Trees
You can now construct the program tree shown in Figure 11-2 using the node class
you just created. Add the exampletree function to gp.py to create the tree:

256 | Chapter 11: Evolving Intelligence

def exampletree():
 return node(ifw,[
 node(gtw,[paramnode(0),constnode(3)]),
 node(addw,[paramnode(1),constnode(5)]),
 node(subw,[paramnode(1),constnode(2)]),
]
)

Start up a Python session to test your program:

>>> import gp
>>> exampletree=gp.exampletree()
>>> exampletree.evaluate([2,3])
1
>>> exampletree.evaluate([5,3])
8

The program successfully performs the same function as the equivalent code block,
so you’ve managed to build a mini tree-based language and interpreter within
Python. This language can be easily extended with more node types, and it will serve
as the basis for understanding genetic programming in this chapter. Try building a
few other simple program trees to make sure you understand how they work.

Displaying the Program
Because you’ll be creating program trees automatically and won’t know what their
structure looks like, it’s important to have a way to display them so that you can eas-
ily interpret them. Fortunately the design of the node class means every node has a
string representing the name of its function, so a display function simply has to
return that string and the display strings of the child nodes. To make it easier to read,
the display should also indent the child nodes so you can visually identify the parent-
child relationships in the tree.

Create a new method in the node class called display, which shows a string represen-
tation of the tree:

 def display(self,indent=0):
 print (' '*indent)+self.name
 for c in self.children:
 c.display(indent+1)

You’ll also need to create a display method for the paramnode class, which simply
prints the index of the parameter it returns:

 def display(self,indent=0):
 print '%sp%d' % (' '*indent,self.idx)

And finally, one for the constnode class:

 def display(self,indent=0):
 print '%s%d' % (' '*indent,self.v)

Creating the Initial Population | 257

Use these methods to print out the tree:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> exampletree=gp.exampletree()
>>> exampletree.display()
if
 isgreater
 p0
 3
 add
 p1
 5
 subtract
 p1
 2

If you’ve read Chapter 7, you’ll notice that this is similar to the way in which deci-
sion trees were displayed in that chapter. Chapter 7 also shows how to display those
trees graphically for a cleaner, easier-to-read output. If you feel so inclined, you can
use the same idea to build a graphical display of your tree programs.

Creating the Initial Population
Although it’s possible to hand-create programs for genetic programming, most of the
time the initial population consists of a set of random programs. This makes the
process easier to start, since it’s not necessary to design several programs that almost
solve a problem. It also creates much more diversity in the initial population—a set
of programs designed by a single programmer to solve a problem are likely to be very
similar, and although they may give answers that are almost correct, the ideal solu-
tion make look quite different. You’ll learn more about the importance of diversity
shortly.

Creating a random program consists of creating a root node with a random associ-
ated function and then creating as many random child nodes as necessary, which in
turn may have their own associated random child nodes. Like most functions that
work with trees, this is most easily defined recursively. Add a new function,
makerandomtree, to gp.py:

def makerandomtree(pc,maxdepth=4,fpr=0.5,ppr=0.6):
 if random()<fpr and maxdepth>0:
 f=choice(flist)
 children=[makerandomtree(pc,maxdepth-1,fpr,ppr)
 for i in range(f.childcount)]
 return node(f,children)
 elif random()<ppr:
 return paramnode(randint(0,pc-1))
 else:
 return constnode(randint(0,10))

258 | Chapter 11: Evolving Intelligence

This function creates a node with a random function and then looks to see how
many child nodes this function requires. For every child node required, the function
calls itself to create a new node. In this way an entire tree is constructed, with
branches ending only if the function requires no more child nodes (that is, if the
function returns a constant or an input variable). The parameter pc, used throughout
this chapter, is the number of parameters that the tree will take as input. The param-
eter fpr gives the probability that the new node created will be a function node, and
ppr gives that probability that it will be a paramnode if it is not a function node.

Try out this function in your Python session to build a few programs, and see what
sort of results you get with different variables:

>>> random1=gp.makerandomtree(2)
>>> random1.evaluate([7,1])
7
>>> random1.evaluate([2,4])
2
>>> random2=gp.makerandomtree(2)
>>> random2.evaluate([5,3])
1
>>> random2.evaluate([5,20])
0

If all of a program’s terminating nodes are constants, the program will not actually
reference the input parameters at all, so the result will be the same no matter what
input you pass to it. You can use the function defined in the previous section to
display the randomly generated trees:

>>> random1.display()
p0
>>> random2.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 2

You’ll see that some of the trees get quite deep, since each branch will keep growing
until it hits a zero-child node. This is why it’s important that you include a
maximum depth constraint; otherwise, the trees can get very large and potentially
overflow the stack.

Testing a Solution | 259

Testing a Solution
You would now have everything you’d need to build programs automatically, if you
could just generate random programs until one is correct. Obviously, this would be
ridiculously impractical because there are infinite possible programs and it’s highly
unlikely that you would stumble across a correct one in any reasonable time frame.
However, at this point it is worth looking at ways to test a solution to see if it’s
correct, and if it’s not, to determine how close it is.

A Simple Mathematical Test
One of the easiest tests for genetic programming is to reconstruct a simple mathe-
matical function. Imagine you were given a table of inputs and an output that looked
like Table 11-1.

There is some function that maps X and Y to the result, but you’re not told what it
is. A statistician might see this and try to do a regression analysis, but that requires
guessing the structure of the formula first. Another option is to build a predictive
model using k-nearest neighbors as you did in Chapter 8, but that requires keeping
all the data. In some cases, you just need a formula, perhaps to codify in another
much simpler program or to describe to other people what’s going on.

I’m sure you’re in suspense, so I’ll tell you what the function is. Add hiddenfunction
to gp.py:

def hiddenfunction(x,y):
 return x**2+2*y+3*x+5

You’re going to use this function to build a dataset against which you can test your
generated programs. Add a new function, buildhiddenset, which creates the dataset:

def buildhiddenset():
 rows=[]
 for i in range(200):
 x=randint(0,40)
 y=randint(0,40)
 rows.append([x,y,hiddenfunction(x,y)])
 return rows

Table 11-1. Data and result for an unknown function

X Y Result

26 35 829

8 24 141

20 1 467

33 11 1215

37 16 1517

260 | Chapter 11: Evolving Intelligence

And use this to create a dataset in your Python session:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> hiddenset=gp.buildhiddenset()

Of course, you know what the function used to generate the dataset looks like, but
the real test is whether genetic programming can reproduce it without being told.

Measuring Success
As with optimization, it’s necessary to come up with a way to measure how good a
solution is. In this case, you’re testing a program against a numerical outcome, so an
easy way to test a program is to see how close it gets to the correct answers for the
dataset. Add scorefunction to gp.py:

def scorefunction(tree,s):
 dif=0
 for data in s:
 v=tree.evaluate([data[0],data[1]])
 dif+=abs(v-data[2])
 return dif

This function checks every row in the dataset, calculating the output from the func-
tion and comparing it to the real result. It adds up all the differences, giving lower
values for better programs—a return value of 0 indicates that the program got every
result correct. You can now test some of your generated programs in your Python
session to see how they stack up:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> gp.scorefunction(random2,hiddenset)
137646
>>> gp.scorefunction(random1,hiddenset)
125489

Since you only generated a few programs and they were generated completely ran-
domly, the chance that one of them is actually the correct function is vanishingly
small. (If one of your programs is the correct function, I suggest that you put the
book down and go buy yourself a lottery ticket.) However, you now have a way to
test how well a program performs on predicting a mathematical function, which is
important for deciding which programs make it to the next generation.

Mutating Programs
After the best programs are chosen, they are replicated and modified for the next
generation. As mentioned earlier, mutation takes a single program and alters it
slightly. The tree programs can be altered in a number of ways—by changing the
function on a node or by altering its branches. A function that changes the number
of required child nodes either deletes or adds new branches, as shown in Figure 11-3.

Mutating Programs | 261

The other way to mutate is by replacing a subtree with an entirely new one, as shown
in Figure 11-4.

Mutation is not something that should be done too much. You would not, for
instance, mutate the majority of nodes in a tree. Instead, you can assign a relatively
small probability that any node will be modified. Beginning at the top of the tree, if a
random number is lower than that probability, the node is mutated in one of the
ways described above; otherwise, the test is performed again on its child nodes.

To keep things simple, the code given here only performs the second kind of muta-
tion. Create a new function called mutate to perform this operation:

def mutate(t,pc,probchange=0.1):
 if random()<probchange:
 return makerandomtree(pc)
 else:
 result=deepcopy(t)
 if isinstance(t,node):
 result.children=[mutate(c,pc,probchange) for c in t.children]
 return result

Figure 11-3. Mutation by changing node functions

if

> –

Y 2X 3

+

Y 5

Original

+

–

Y 2

+

Y 5

Mutated

262 | Chapter 11: Evolving Intelligence

This function begins at the top of the tree and decides whether the node should be
altered. If not, it calls mutate on the child nodes of the tree. It’s possible that the
entire tree will be mutated, and it’s also possible to traverse the entire tree without
changing it.

Try running mutate a few times on the randomly generated programs you built
earlier, and see how it modifies the trees:

>>> random2.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 2

Figure 11-4. Mutation by replacing subtrees

if

> –

Y 2X 3

+

Y 5

Original

if

> *

X YX 3

+

Y 5

Mutated

Replaced

Crossover | 263

>>> muttree=gp.mutate(random2,2)
>>> muttree.display()
subtract
 7
 multiply
 isgreater
 p0
 p1
 if
 multiply
 p1
 p1
 p0
 p1

See if the result of scorefunction has changed significantly, for better or worse, after
the tree has been mutated:

>>> gp.scorefunction(random2,hiddenset)
125489
>>> gp.scorefunction(muttree,hiddenset)
125479

Remember that the mutations are random, and they aren’t necessarily directed
toward improving the solution. The hope is simply that some will improve the result.
These changes will be used to continue, and over several generations the best solu-
tion will eventually be found.

Crossover
The other type of program modification is crossover or breeding. This involves tak-
ing two successful programs and combining them to create a new program, usually
by replacing a branch from one with a branch from another. Figure 11-5 shows an
example of how this works.

The function for performing a crossover takes two trees as inputs and traverses down
both of them. If a randomly selected threshold is reached, the function returns a
copy of the first tree with one of its branches replaced by a branch in the second tree.
By traversing both trees at once, the crossover happens at approximately the same
level on each tree. Add the crossover function to gp.py:

def crossover(t1,t2,probswap=0.7,top=1):
 if random()<probswap and not top:
 return deepcopy(t2)
 else:
 result=deepcopy(t1)
 if isinstance(t1,node) and isinstance(t2,node):
 result.children=[crossover(c,choice(t2.children),probswap,0)
 for c in t1.children]
 return result

264 | Chapter 11: Evolving Intelligence

Try crossover on a few of the randomly generated programs. See what they look like
after the crossover, and see if crossing over two of the best programs occasionally
leads to a better program:

>>> random1=gp.makerandomtree(2)
>>> random1.display()
multiply
 subtract
 p0
 8
 isgreater
 p0
 isgreater
 p1
 5

Figure 11-5. Crossover operation

if

> –

Y 2X 3

+

Y 5

Parent 1

if

> –

Y 2X 3

–

* 2

Offspring

Remove

*

+ –

* 2X 3

Parent 2

Y 5

Add

Y 5

Building the Environment | 265

>>> random2=gp.makerandomtree(2)
>>> random2.display()
if
 8
 p1
 2
>>> cross=gp.crossover(random1,random2)
>>> cross.display()
multiply
 subtract
 p0
 8
 2

You’ll probably notice that swapping out branches can radically change what the
program does. You may also notice that programs may be close to being correct for
completely different reasons, so merging them produces a result that’s very different
from either of its predecessors. Again, the hope is that some crossovers will improve
the solution and be kept around for the next generation.

Building the Environment
Armed with a measure of success and two methods of modifying the best programs,
you’re now ready to set up a competitive environment in which programs can evolve.
The steps are shown in the flowchart in Figure 11-1. Essentially, you create a set of
random programs and select the best ones for replication and modification, repeat-
ing this process until some stopping criteria is reached.

Create a new function called evolve to carry out this procedure:

def evolve(pc,popsize,rankfunction,maxgen=500,
 mutationrate=0.1,breedingrate=0.4,pexp=0.7,pnew=0.05):
 # Returns a random number, tending towards lower numbers. The lower pexp
 # is, more lower numbers you will get
 def selectindex():
 return int(log(random())/log(pexp))

 # Create a random initial population
 population=[makerandomtree(pc) for i in range(popsize)]
 for i in range(maxgen):
 scores=rankfunction(population)
 print scores[0][0]
 if scores[0][0]==0: break

 # The two best always make it
 newpop=[scores[0][1],scores[1][1]]

266 | Chapter 11: Evolving Intelligence

 # Build the next generation
 while len(newpop)<popsize:
 if random()>pnew:
 newpop.append(mutate(
 crossover(scores[selectindex()][1],
 scores[selectindex()][1],
 probswap=breedingrate),
 pc,probchange=mutationrate))
 else:
 # Add a random node to mix things up
 newpop.append(makerandomtree(pc))

 population=newpop
 scores[0][1].display()
 return scores[0][1]

This function creates an initial random population. It then loops up to maxgen times,
each time calling rankfunction to rank the programs from best to worst. The best
program is automatically passed through to the next generation unaltered, which is
sometimes referred to as elitism. The rest of the next generation is constructed by
randomly choosing programs that are near the top of the ranking, and then breeding
and mutating them. This process repeats until either a program has a perfect score of
0 or maxgen is reached.

The function has several parameters, which are used to control various aspects of the
environment. They are:

rankfunction
The function used on the list of programs to rank them from best to worst.

mutationrate
The probability of a mutation, passed on to mutate.

breedingrate
The probability of crossover, passed on to crossover.

popsize
The size of the initial population.

probexp
The rate of decline in the probability of selecting lower-ranked programs. A
higher value makes the selection process more stringent, choosing only programs
with the best ranks to replicate.

probnew
The probability when building the new population that a completely new, ran-
dom program is introduced. probexp and probnew will be discussed further in the
upcoming section “The Importance of Diversity.”

Building the Environment | 267

The final thing you’ll need before beginning the evolution of your programs is a way
to rank programs based on the result of scorefunction. In gp.py, create a new
function called getrankfunction, which returns a ranking function for a given
dataset:

def getrankfunction(dataset):
 def rankfunction(population):
 scores=[(scorefunction(t,dataset),t) for t in population]
 scores.sort()
 return scores
 return rankfunction

You’re ready to automatically create a program that represents the formula for your
mathematical dataset. Try this in your Python session:

>>> reload(gp)
>>> rf=gp.getrankfunction(gp.buildhiddenset())
>>> gp.evolve(2,500,rf,mutationrate=0.2,breedingrate=0.1,pexp=0.7,pnew=0.1)
16749
10674
5429
3090
491
151
151
0
add
 multiply
 p0
 add
 2
 p0
 add
 add
 p0
 4
 add
 p1
 add
 p1
 isgreater
 10
 5

The numbers change slowly, but they should decrease until they finally reach 0.
Interestingly, the solution shown here gets everything correct, but it’s quite a bit
more complicated than the function used to create the dataset. (It’s very likely that
the solution you generated will also seem more complicated than it has to be.) How-
ever, a little algebra shows us that these functions are actually the same—remember
that p0 is X and p1 is Y. The first line is the function represented by this tree:

 (X*(2+X))+X+4+Y+Y+(10>5)
= 2*X+X*X+X+4+Y+Y+1
= X**2 + 3*X + 2*Y + 5

268 | Chapter 11: Evolving Intelligence

This demonstrates an important property of genetic programming: the solutions it
finds may well be correct or very good, but because of the way they are constructed,
they will often be far more complicated than anything a human programmer would
design. There will often be large sections of a program that don’t do anything or that
represent a complicated formula that returns the same value every time. Notice in the
above example that the node (10>5) is just an odd way of saying 1.

It is possible to force the programs to remain simple, but in many cases this will
make it more difficult to find a good solution. A better way to deal with this issue is
to allow the programs to evolve to a good solution and then remove and simplify
unnecessary portions of the tree. You can do this manually, and in some cases you
can do it automatically using a pruning algorithm.

The Importance of Diversity
Part of the evolve function ranks the programs from best to worst, so it’s tempting to
just take two or three of the programs at the top and replicate and modify them to
become the new population. After all, why would you bother allowing anything less
than the best to continue?

The problem is that choosing only a couple of the top solutions quickly makes the
population extremely homogeneous (or inbred, if you like), containing solutions that
are all pretty good but that won’t change much because crossover operations
between them lead to more of the same. This problem is called reaching a local
maxima, a state that is good but not quite good enough, and one in which small
changes don’t improve the result.

It turns out that having the very best solutions combined with a large number of
moderately good solutions tends to lead to better results. For this reason, the evolve
function has a couple of extra parameters that allow you to tune that amount of
diversity in the selection process. By lowering the probexp value, you allow weaker
solutions into the final result, turning the process from “survival of the fittest” to
“survival of the fittest and luckiest.” By increasing the probnew value, you allow com-
pletely new programs to be added to the mix occasionally. Both of these values
increase the amount of diversity in the evolution process but won’t disrupt it too
much, since the very worst programs will always be eliminated eventually.

A Simple Game
A more interesting problem for genetic programming is building an AI for a game.
You can force the programs to evolve by having them compete against each other
and against real people, and giving the ones that win the most a higher chance of
making it to the next generation. In this section, you’ll create a simulator for a very
simple game called Grid War, which is depicted in Figure 11-6.

A Simple Game | 269

The game has two players who take turns moving around on a small grid. Each
player can move in one of four directions, and the board is limited so if a player
attempts to move off one side, he forfeits his turn. The object of the game is to
capture the other player by moving onto the same square as his on your turn. The
only additional constraint is that you automatically lose if you try to move in the
same direction twice in a row. This game is very basic but since it pits two players
against each other, it will let you explore more competitive aspects of evolution.

The first step is to create a function that uses two players and simulates a game
between them. The function passes the location of the player and the opponent to
each program in turn, along with the last move made by the player, and takes the
return value as the move.

The move should be a number from 0 to 3, indicating one of four possible directions,
but since these are random programs that can return any integer, the function has to
handle values outside this range. To do this, it uses modulo 4 on the result. Random
programs are also liable to do things like create a player that moves in a circle, so the
number of moves is limited to 50 before a tie is declared.

Add gridgame to gp.py:

def gridgame(p):
 # Board size
 max=(3,3)

 # Remember the last move for each player
 lastmove=[-1,-1]

 # Remember the player's locations
 location=[[randint(0,max[0]),randint(0,max[1])]]

 # Put the second player a sufficient distance from the first
 location.append([(location[0][0]+2)%4,(location[0][1]+2)%4])

Figure 11-6. Grid War example

X

O

270 | Chapter 11: Evolving Intelligence

 # Maximum of 50 moves before a tie
 for o in range(50):

 # For each player
 for i in range(2):
 locs=location[i][:]+location[1-i][:]
 locs.append(lastmove[i])
 move=p[i].evaluate(locs)%4

 # You lose if you move the same direction twice in a row
 if lastmove[i]==move: return 1-i
 lastmove[i]=move
 if move==0:
 location[i][0]-=1
 # Board limits
 if location[i][0]<0: location[i][0]=0
 if move==1:
 location[i][0]+=1
 if location[i][0]>max[0]: location[i][0]=max[0]
 if move==2:
 location[i][1]-=1
 if location[i][1]<0: location[i][1]=0
 if move==3:
 location[i][1]+=1
 if location[i][1]>max[1]: location[i][1]=max[1]

 # If you have captured the other player, you win
 if location[i]==location[1-i]: return i
 return -1

The program will return 0 if player 1 is the winner, 1 if player 2 is the winner, and –1
in the event of a tie. You can try building a couple of random programs and having
them compete:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> p1=gp.makerandomtree(5)
>>> p2=gp.makerandomtree(5)
>>> gp.gridgame([p1,p2])
1

These programs are totally unevolved, so they probably lose by moving in the same
direction twice in a row. Ideally, an evolved program will learn not to do this.

A Round-Robin Tournament
In keeping with collective intelligence, you would want the programs to test their fit-
ness by playing against real people, and force their evolution that way. This would be
a great way to capture the behavior of thousands of people and use it to develop a
more intelligent program. However, with a large population and many generations,

A Simple Game | 271

this could quickly add up to tens of thousands of games, and most of them would be
against very poor opponents. That’s impractical for our purposes, so you can first
have the programs evolve by competing against each other in a tournament.

The tournament function takes a list of players as its input and pits each one against
every other one, tracking how many times each program loses its game. Programs get
two points if they lose and one point if they tie. Add tournament to gp.py:

def tournament(pl):
 # Count losses
 losses=[0 for p in pl]

 # Every player plays every other player
 for i in range(len(pl)):
 for j in range(len(pl)):
 if i==j: continue

 # Who is the winner?
 winner=gridgame([pl[i],pl[j]])

 # Two points for a loss, one point for a tie
 if winner==0:
 losses[j]+=2
 elif winner==1:
 losses[i]+=2
 elif winner==-1:
 losses[i]+=1
 losses[i]+=1
 pass

 # Sort and return the results
 z=zip(losses,pl)
 z.sort()
 return z

At the end of the function, the results are sorted and returned with the programs that
have the fewest losses at the top. This is the return type needed by evolve to evaluate
programs, which means that tournament can be used as an argument to evolve and
that you’re now ready to evolve a program to play the game. Try it in your Python
session (this may take some time):

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> winner=gp.evolve(5,100,gp.tournament,maxgen=50)

As the programs evolve, notice that the loss numbers don’t strictly decrease like they
did with the mathematical function. Take a minute to think about why this is—after
all, the best player is always allowed into the next generation, right? As it turns out,
since the next generation consists entirely of newly evolved programs, the best
program in one generation might fare a lot worse in the next.

272 | Chapter 11: Evolving Intelligence

Playing Against Real People
Once you’ve evolved a program that performs well against its robotic competitors,
it’s time to battle against it yourself. To do this, you can create another class that also
has an evaluate method that displays the board to the user and asks what move they
want to make. Add the humanplayer class to gp.py:

class humanplayer:
 def evaluate(self,board):

 # Get my location and the location of other players
 me=tuple(board[0:2])
 others=[tuple(board[x:x+2]) for x in range(2,len(board)-1,2)]

 # Display the board
 for i in range(4):
 for j in range(4):
 if (i,j)==me:
 print 'O',
 elif (i,j) in others:
 print 'X',
 else:
 print '.',
 print

 # Show moves, for reference
 print 'Your last move was %d' % board[len(board)-1]
 print ' 0'
 print '2 3'
 print ' 1'
 print 'Enter move: ',

 # Return whatever the user enters
 move=int(raw_input())
 return move

In your Python session, you can take on your creation:

>>> reload(gp)
<module 'gp' from 'gp.py'>
>>> gp.gridgame([winner,gp.humanplayer()])
. O . .
. . . .
. . . .
. . . X
Your last move was -1
 0
2 3
 1
Enter move:

Further Possibilities | 273

Depending on how well your program evolved, you may find it easy or difficult to
beat. Your program will almost certainly have learned that it can’t make the same
move twice in a row, since that leads to instant death, but the extent to which it has
mastered other strategies will vary with each run of evolve.

Further Possibilities
This chapter is just an introduction to genetic programming, which is a huge and
rapidly advancing field. You’ve used it so far to approach simple problems in which
programs are built in minutes rather than days, but the principles can be extended to
much more complex problems. The number of programs in the populations here
have been very small compared to those used in more complex problems—a
population of thousands or tens of thousands is more typical. You are encouraged to
come up with more difficult problems and try larger population sizes, but you may
have to wait hours or days while the programs run.

The following section outlines a few ways in which the simple genetic programming
model can be extended for different applications.

More Numerical Functions
We have used a very small set of functions to construct the programs so far. This
limits the scope of what a simple program can do—for more complicated problems,
it’s necessary to greatly increase the number of functions available to build a tree.
Here are some possible functions to add:

• Trigonometric functions like sine, cosine, and tangent

• Other mathematical functions like power, square root, and absolute value

• Statistical distributions, such as a Gaussian

• Distance metrics, like Euclidean and Tanimoto distances

• A three-parameter function that returns 1 if the first parameter is between the
second and third

• A three-parameter function that returns 1 if the difference between the first two
parameters is less than the third

These can get as complicated as you like, and they are often tailored to specific
problems. Trigonometric functions may be a necessity when working in a field like
signal processing, but they are not much use in a game like the one you built in this
chapter.

274 | Chapter 11: Evolving Intelligence

Memory
The programs in this chapter are almost entirely reactive; they give a result based
solely on their inputs. This is the right approach for solving mathematical functions,
but it doesn’t allow the programs to work from a longer-term strategy. The chasing
game passes the programs the last move they made—mostly so the programs learn
they can’t make the same move twice in a row—but this is simply the output of the
program, not something they set themselves.

For a program to develop a longer-term strategy, it needs a way to store information
for use in the next round. One simple way to do this is to create new kinds of nodes
that can store and retrieve values from predefined slots. A store node has a single
child and an index of a memory slot; it gets the result from its child and stores it in
the memory slot and then passes this along to its parent. A recall node has no chil-
dren and simply returns the value in the appropriate slot. If a store node is at the top
of the tree, the final result is available to any part of the tree that has the appropriate
recall node.

In addition to individual memory, it’s also possible to set up shared memory that can
be read and written to by all the different programs. This is similar to individual
memory, except that there are a set of slots that all the programs can read from and
write to, creating the potential for higher levels of cooperation and competition.

Different Datatypes
The framework described in this chapter is for programs that take integer parameters
and return integers as results. It can easily be altered to work with float values, since
the operations are the same. To do this, simply alter makerandomtree to create the
constant nodes with a random float value instead of a random integer.

Building programs that handle other kinds of data will require more extensive modi-
fication, mostly changing the functions on the nodes. The basic framework can be
altered to handle types such as:

Strings
These would have operations like concatenate, split, indexing, and substrings.

Lists
These would have operations similar to strings.

Dictionaries
These would include operations like replacement and addition.

Objects
Any custom object could be used as an input to a tree, with the functions on the
nodes being method calls to the object.

Further Possibilities | 275

An important point that arises from these examples is that, in many cases, you’ll
require the nodes in the tree to process more than one type of return value. A sub-
string operation, for example, requires a string and two integers, which means that
one of its children would have to return a string and the other two would have to
return integers.

The naïve approach to this would be to randomly generate, mutate, and breed trees,
simply discarding the ones in which there is a mismatch in datatypes. However, this
would be computationally wasteful, and you’ve already seen how you can put a con-
straint on the way trees are constructed—every function in the integer trees knows
how many children it needs, and this can be easily extended to constrain the types of
children and their return types. For example, you might redefine the fwrapper class
like the following, where params is a list of strings specifying datatypes that can be
used for each parameter:

class fwrapper:
 def __init_ _(self,function,params,name):
 self.function=function
 self.childcount=param
 self.name=name

You’d also probably want to set up flist as a dictionary with return types. For
example:

flist={'str':[substringw,concatw],'int':[indexw,addw,subw]}

Then you could change the start of makerandomtree to something like:

def makerandomtree(pc,datatype,maxdepth=4,fpr=0.5,ppr=0.5):
 if random()<fpr and maxdepth>0:
 f=choice(flist[datatype])
 # Call makerandomtree with all the parameter types for f
 children=[makerandomtree(pc,type,maxdepth-1,fpr,ppr)
 for type in f.params]
 return node(f,children)
etc...

The crossover function would also have to be altered to ensure that swapped nodes
have the same return type.

Ideally, this section has given you some ideas about how genetic programming can
be extended from the simple model described here, and has inspired you to improve
it and to try automatically generating programs for more complex problems.
Although they may take a very long time to generate, once you find a good program,
you can use it again and again.

276 | Chapter 11: Evolving Intelligence

Exercises
1. More function types. We started with a very short list of functions. What other

functions can you think of? Implement a Euclidean distance node with four
parameters.

2. Replacement mutation. Implement a mutation procedure that chooses a random
node on the tree and changes it. Make sure it deals with function, constant, and
parameter nodes. How is evolution affected by using this function instead of the
branch replacement?

3. Random crossover. The current crossover function chooses branches from two
trees at the same level. Write a different crossover function that crosses any two
random branches. How does this affect evolution?

4. Stopping evolution. Add an additional criteria to evolve that stops the process
and returns the best result if the best score hasn’t improved within X generations.

5. Hidden functions. Try creating other mathematical functions for the programs to
guess. What sort of functions can be found easily, and which are more difficult?

6. Grid War player. Try to hand-design your own tree program that does well at
Grid War. If you find this easy, try to write another completely different one.
Instead of having a completely random initial population, make it mostly
random, with your hand-designed programs included. How do they compare to
random programs, and can they be improved with evolution?

7. Tic-tac-toe. Build a tic-tac-toe simulator for your programs to play. Set up a
tournament similar to the Grid War tournament. How well do the programs do?
Can they ever learn to play perfectly?

8. Nodes with datatypes. Some ideas were provided in this chapter about
implementing nodes with mixed datatypes. Implement this and see if you can
evolve a program that learns to return the second, third, sixth, and seventh
characters of a string (e.g., “genetic” becomes “enic”).

