
LEARNING FROM

GRAPHS
Link analysis

Motivation: who is most important?

• Goal: learn importance of graph nodes given only the

structure of the graph

Terrorist network Web graph

Theory: Random Walks on Graphs

• Random walk:

• Start from a node chosen uniformly at random with

probability
1

𝑛
.

• Pick one of the outgoing edges uniformly at random

• Move to the destination of the edge

• Repeat.

Random walk

• Question: what is the probability 𝑝𝑖
𝑡 of being at

node 𝑖 after 𝑡 steps?
𝑣2

𝑣3

𝑣4𝑣5

𝑣1

𝑝3
0 =

1

5

𝑝4
0 =

1

5

𝑝5
0 =

1

5

𝑝1
𝑡 =

1

3
𝑝4
𝑡−1 +

1

2
𝑝5
𝑡−1

𝑝2
𝑡 =

1

2
𝑝1
𝑡−1 + 𝑝3

𝑡−1 +
1

3
𝑝4
𝑡−1

𝑝3
𝑡 =

1

2
𝑝1
𝑡−1 +

1

3
𝑝4
𝑡−1

𝑝4
𝑡 =

1

2
𝑝5
𝑡−1

𝑝5
𝑡 = 𝑝2

𝑡−1

𝑝1
0 =

1

5

𝑝2
0 =

1

5

Stationary distribution

• After many-many steps (𝑡 → ∞) the probabilities converge
(updating the probabilities does not change the numbers)

• The converged probabilities define the stationary distribution
of a random walk 𝜋

• The probability 𝜋𝑖 is the fraction of times that we visited
state 𝑖 as 𝑡 → ∞

• Markov Chain Theory: The random walk converges to a
unique stationary distribution independent of the initial
vector if the graph is strongly connected, and not bipartite.

Random walk with Restarts

• This is the random walk used by the PageRank algorithm

• At every step with probability 1-α do a step of the random walk

(follow a random link)

• With probability α restart the random walk from a randomly

selected node.

• The effect of the restart is that paths followed are never too long.

• In expectation paths have length 1/α

• Restarts can also be from a specific node in the graph (always start

the random walk from there)

• What is the effect of that?

• The nodes that are close to the starting node have higher

probability to be visited.

Why do we care?

Web Search is a huge IR system

• A Web crawler (robot) crawls the Web to collect all the

pages.

• Servers establish a huge inverted indexing database and

other indexing databases

• At query (search) time, search engines conduct different

types of vector query matching.

• There is an Information Retrieval score coming out of

this.

• If many pages match the keyword search, we need to

rank pages by a reputation score.

Google Page Ranking

“The Anatomy of a Large-Scale Hypertextual Web

Search Engine”

by

Sergey Brin and Lawrence Page

http://www-db.stanford.edu/~backrub/google.html

http://www-db.stanford.edu/~backrub/google.html

HOW TO EVALUATE A

REPUTATION SCORE OF A

NODE IN A GRAPH
Page Rank Algorithm

Ranking pages by Link Analysis: intuition

• Represent WEB pages by a directed graph

• Nodes are pages

• Edges are links

• To be clear: an arrow ending at a given page is a link into

that page, and an arrow starting there is a link out to

another webpage.

A B

C D

Ideas

• Idea 1: A webpage is important if it has many

arrows pointing to it, i.e., many incoming links.

Why this is too naïve?

Ideas

• Idea 1: A webpage is important if it has many

arrows pointing to it, i.e., many incoming links.

Why this is too naïve?

• Pages from any WEB site have links to the
Home page, which will always be rated higher
than individual pages

Ideas

• Idea 2: a webpage is important if many important
pages link to it.

It seems that:

a problem now is the self-referential nature of

this definition

if we follow this line of reasoning, we might find

that the importance of a web page depends on

itself.

Models of the WEB

• What can we speculate about the relative importance of

pages in each of these models, solely from the structure

of the links (which is anyways the only information at

hand)?

B

C

D

B

C

D

Traffic and mindless surfing.

• Assumptions:

• The WEB site is important if it gets a lot of traffic.

• Let us further assume that everyone is surfing spending

a second on each page and then randomly following a

link to a new page.

• In this scheme it is convenient to make sure a surfer

cannot get stuck, so we make the following STANDING

ASSUMPTION:

Each page has at least one outgoing link.

Traffic and mindless surfing.

Example 1

B

A

C

• We start with 10 surfers in each page

• At the first random click, 5 of the surfers at page A, say, go to page B,

and the other 5 go to page C. So while each site sees all 10 of its

visitors leave, it gets 5 + 5 incoming visitors to replace them: So the

amount of traffic at each page remains constant at 10.

10

10

10

10

10

10

5

5

5

5

5 5

Traffic and mindless surfing.

Example 2

B

A

C

• We start with 10 surfers in each page

• After the first random click, 10 of the surfers at page A go to page B,

since there is only 1 outgoing link from A etc…

10

10

10

15

10

5

5

5

10

10

• After the two next clicks it becomes

• Where is this leading? Do we ever reach a stable configuration, as in

the first model?

15

10

5

7.5

7.5

5

10

10

12.5

7.5

5

5

7.5

12.5

12.5

12.5

5

Traffic and mindless surfing.

Example 2

• While the answer is no, the process converges to the following

distribution, which (you can check) remains the same going forward in

time

• This precisely corresponds to the random walk on graphs and Markov

chain property that the probability of the next step does not depend

on the history of previous walks

12

12

6

Traffic and mindless surfing.

Example 2

Traffic and mindless surfing.

Example 2

• This stable distribution is what the PageRank algorithm (in its most

basic form) uses to assign a rank to each page:

• The two pages with 12 visitors are equally important, and each

more important than the remaining page having 6 visitors.

12

12

6

• How do we qualitatively explain why two of the pages in this model

should be ranked equally, even though one has more incoming links

than the other?

12

12

6

B

A

C

Traffic and mindless surfing.

Example 2

How to compute the stable distribution?

B

A

C

1/2

1/2

1

1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

• Initiate matrix of probabilities to go from
the current page to all other pages

• This gives the number of random surfers
ending at each page

• We assume that this number indicates
the importance of each page at time i

To simultaneously re-evaluate page rank

in each iteration i

Ri+1(A)

=

0 1/2 1

*

Ri(A)

Ri+1(B) 1 0 0 Ri(B)

Ri+1(C) 0 1/2 0 Ri(C)

Rank of the page in

the previous

iteration

Importance

distribution from the

previous iteration

• All boils down to a sequence of matrix-vector multiplications

• Map-reduce was invented to do this fast in parallel

https://hope.simons-rock.edu/~mbarsky/dbfall17/lectures/alt/ch2.pdf

Coding is easy

• Code repository:

https://github.com/mgbarsky/page_rank_lab.git

https://github.com/mgbarsky/page_rank_lab.git

PageRank exercise 1.

• Guess what pages in the given model got the highest

rank

• Check your guess by running the program

A B

D C

PageRank exercise 2.

• Guess what pages in the given model got the highest

rank

• Check your guess by running the program

A B

D C

PageRank exercise 3.

• Guess what pages in the given model got the highest

rank

• Check your guess by running the program

A B

D C

PageRank exercise 4.

• Guess what pages in the given model got the highest

rank

• Check your guess by running the program

A B

D C

Page Rank: General Formula

PR(A) = PR(T1)/C(T1) +…+ PR(Tn)/C(Tn)

1. PR(Ti) - Each page has a notion of its own self-
importance, which is say 1 initially.

2. C(Ti) – Count of outgoing links from page Ti.
1. Each page spreads its vote out evenly amongst all of it’s

outgoing links.

3. PR(Ti)/C(Ti) –
a) Each page spreads its vote out evenly amongst all of it’s

outgoing links.

b) So if our page (say page A) has a back link from page “i”
the share of the vote page A will get from page “i” is
“PR(Ti)/C(Ti).”

We re-estimate the rank for all pages

at the same time

• The page rank (PR) of each page depends on the PR of the
pages pointing to it.

• We won’t know what PR those pages have until the
pages pointing to them have their PR calculated and so
on…

• Well, we just go ahead and calculate a page’s PR without
knowing the final value of the PR of the other pages.

• Each time we run the calculation we’re getting a closer
estimate of the final value.

• Repeat the calculations lots of times until the numbers
converge.

Web Matrix

Capture the formula by the web matrix (M) that is:

• If page j has n successors (links), then:

• M[i, j] =1/n if page i is one of these n successors of

page j, and

• 0 otherwise.

Then, the importance vector containing the rank of each

page is calculated by:

Ranknew = M • Rankold

Example
• Assume that in 1939, the Web consisted of only three

pages: Netscape, Microsoft, and Amazon.

=

old

old

old

new

new

new

a

m

n

a

m

n

0121

2100

21021

For example, the first column of the Web matrix

reflects the fact that Netscape divides its importance

between itself and Amazon.

The second column indicates that Microsoft gives all

its importance to Amazon.

Start with n = m = a = 1, then do rounds of

improvements. Based on Jeff Ullman’s notes

http://infolab.stanford.edu/~ullman/mining/websearch.pdf

Example
• The first four iterations give the following estimates:

n = 1

m = 1

a = 1

1

1/2

3/2

5/4

3/4

1

9/8

1/2

11/8

5/4

11/16

17/16

• In the limit, the solution is n = a = 6/5; m = 3/5.

• That is, Netscape and Amazon each have the same importance, and

twice the importance of Microsoft (well this was 1839).

Real Web Graphs: dead ends

Dead ends: a page that has no

successors has nowhere to send its

importance.

Eventually, all importance will “leak out”

of the Web.

Example: Suppose Microsoft tries to

claim that it is a monopoly by

removing all links from its site.

The new Web, and the rank vectors

for the first 4 iterations are shown.

n = 1 1 3/4 5/8 1/2

m = 1 1/2 1/4 1/4 3/16

a = 1 1/2 1/2 3/8 5/16

Eventually, each of n, m, and a become 0; i.e.,

all the importance will leak out.

=

old

old

old

new

new

new

a

m

n

a

m

n

0021

2100

21021

web = ((1, 0, 1),

(0, 0, 0),

(1, 1, 0))

This matrix cannot be

computed by our code –

determinant is 0

Real Web Graphs: spider traps

Spider traps: a group of one or more

pages that have no links out of the

group will eventually accumulate all

the importance of the Web.

Example: Angered by the decision,

Microsoft decides it will link only to

itself from now on. Now, Microsoft

has become a spider trap.

The new Web, and the rank vectors

for the first 4 iterations are shown.

n = 1 1 3/4 5/8 1/2

m = 1 3/2 7/4 2 35/16

a = 1 1/2 1/2 3/8 5/16Now, m converges to 3, and n = a = 0.

=

old

old

old

new

new

new

a

m

n

a

m

n

0021

2110

21021

web = ((1, 0, 1),

(0, 1, 0),

(1, 1, 0))

Google Solution to

Dead Ends and Spider Traps
Stop the other pages having too much influence.

This total vote is “damped down” by multiplying it by a factor.

Example: If we use a 20% damp-down, the equation of
previous example becomes:

+

=

old

old

old

old

old

old

new

new

new

a

m

n

a

m

n

a

m

n

20.0

0021

2110

21021

80.0

The solution to this equation is n = 7/11; m = 21/11; a = 5/11.

Lab: most important terrorists?

Graph of the Al Qaeda group behind the September 11 attacks
Source: The Numbers Behind NUMB3RS

https://www.amazon.com/Numbers-Behind-NUMB3RS-Solving-Mathematics/dp/0452288576

