
Perceptron
Lecture 09.01

There is a fantastic existence proof that learning is
possible, which is the bag of water and electricity
(together with a few trace chemicals) sitting between
your ears.

Stephen Marsland. “Machine learning: an algorithmic
perspective”

How computer works

Some useful
computations

Inputs
Outputs

How brain works: neurons

Neuron is an electrically excitable cell that processes and
transmits information by electrical and chemical signaling.

Input

Output

Neurons: signal summation

• Dendrite(s) receive an electric charge.

• The strengths of all the received charges are added
together (spatial and temporal summation).

• The aggregate value is then passed to the soma (cell body)
to axon hillock.

Neurons: activation threshold

• If the aggregate input is greater than the axon hillock's
threshold value, then the neuron fires, and an output signal
is transmitted down the axon.

Neurons: the output signal is
constant
• The strength of the output is constant, regardless of

whether the input was just above the threshold, or a
hundred times as great.

• This uniformity is critical in an analogue device such as a
brain where small errors can snowball, and where error
correction is more difficult.

How real neurons communicate

• The signal is transmitted to other
neurons through synapses.

• The physical and neurochemical
characteristics of each synapse
determine the strength and polarity of
the new input signal.

• This is where the brain is the most
flexible: neuroplasticity.

Modeling brain with networks

• The complicated biological phenomena may be modeled by
a very simple model: nodes model neurons and edges
model connections.

• The input nodes each have a weight that they contribute to
the neuron, if the input is active. This corresponds to the
strength of a synaptic connection.

A

B

C

D

Modeling brain with networks

• Node takes input and triggers other nodes through
connections

• Node D needs to think if it wants to propagate the signal

• The decision is made from the output of threshold function
(0 or 1)

A

B

C

D

Mathematical model of a neuron
(McCulloch and Pitt, 1943)

x1

x2

xi

w1

w2

wi

Input neurons (x)

Output neuronIN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

Terminology

x1

x2

xi

w1

w2

wi

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

• An input vector x is the data given as one input to the
processing “neuron” (corresponds to afferent neurons that
transmit information to the brain).

Terminology

x1

x2

xi

w1

w2

wi

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

• Weights wi , are the weighted connections between input
neurons and the processing neuron (these weights are analogous
to the strength of synaptic connections in the brain).

• They are arranged into a matrix W.

Terminology

x1

x2

xi

w1

w2

wi

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

• The output y, shows the resulting action of processing neuron: neuron

fires(1) or not(0).

• We can write y(x,W) to remind that the output depends on the inputs to

the algorithm and the current set of weights of the network.

Terminology

x1

x2

xi

w1

w2

wi

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

• The summation function IN sums all the signals from the input
vector multiplied by weights, and feeds the result into
activation function g.

Combination function:
mostly weighted sum

Terminology

x1

x2

xi

w1

w2

wi

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

• The activation function g(·) is a mathematical function that describes the

firing of the neuron as a response to the weighted inputs.

• As in real brain, this is a threshold function: neuron either fires, or not.

Activation function should
be threshold function

Terminology

x1

x2

xi

w1

w2

wi

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

Activation function should
be threshold function

The simplest threshold function: sign
g(x)=0 if x<=0
g(x)=1 if (x>0) (neuron fires)

Neuron for OR function

x1

x2

1

1

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

g(x)=0 if x<=0
g(x)=1 if (x>0)

x1 x2 y

0 0 0

0 1 1

1 0 1

1 1 1

x1 x2 IN g y

0 0 0 0 0

0 1 1 1 1

1 0 1 1 1

1 1 2 1 1

Neuron for AND function

x1

x2

1

1

Input vector (x)

Output: 0 or 1 IN

Σ

IN=Σ(i)xiwi

g
a

a=g(IN)

“Neuron”

y

g(x)=0 if x<=1
g(x)=1 if (x>1)

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 IN g y

0 0 0 0 0

0 1 1 0 0

1 0 1 0 0

1 1 2 1 1

Just changed
the threshold
for firing from

0 to 1

How do we learn: brain

• Hebbian theory: “Cells that fire
together wire together”

• Persistent changes in molecular
structures alter synaptic
transmission between neurons

• This corresponds to changing
weights in Neural Network

Neuron with learning capabilities:
Perceptron (Rosenblatt, 1958)
• The network can learn its own weights.

• It is presented with a set of inputs and predefined outputs.

• The actual output is different from the predefined output by
some error.

• Adjust the connection weights to produce a smaller error.

Teaching perceptron the concept
of AND

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

Consider the following simple labeled dataset:

Each data record has 2 attributes
–X1 and X2, and the record is
classified into a binary class

We want to train Perceptron so it will be able to predict the
correct label based on the value of X1, X2.

grandma holiday present

Learning algorithm: example

w1=0.2

w2=-0.5 IN

Σ

g
a

a=g(IN)x1

x2

initialize the weights to random values: for example W = [0.2, -0.5]
total error E = ∞
while E != 0:

E = 0
for each record

present network with input vector
compute output y according to g
for each xi, wi compute classification error Δ wi = (t – y)*xi

increase or decrease wi to get closer to the target
E += Δ wi

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

y

Dataset

Learning step: example

w1=0.2

w2=-0.5 IN

Σ

g
a

a=g(IN)x1

x2

showing vector [1,1]
IN = 0.2 – 0.5
G(IN) < 0 → y=0 (Neuron does not fire)
Our target t = 1
Δ w1 = (t – y)*x1 = 1
We need to increase w1 to get closer to the desired target t

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

y

Training Perceptron:
learning rate

Δ =T - Y

T – desired output
(target)
Y – actual output

The delta rule:
wi ← wi + η x xi

x Δ

η (eta) represents the
“learning rate” – the speed
with which we move in the
direction of the target

But do not adjust by the entire value
of error, just move slightly into desired
direction

Bias input

w1=0.2

w2=-0.5 IN

Σ

g
a

a=g(IN)x1

x2

showing vector [0,0]
IN = 0

• No matter how we adjust the weights the result never changes!
• To avoid this situation we add a “bias” node x0 with the constant

value (for example -1), so we could adjust its weight w0 to move
the value of y closer to t in case that all other values in the input
vector are 0

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

y

-1
t=0.3

Using bias input: example

0.3

0.3

0.3

IN

Σ

g=sign
a

a=g(IN)x1

x2

x3

y

x1 x2 x3 y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1

g=sign(Σ+0.4)

y=sign(w1x1+w2x2+w3x3+t)

1
t=0.4

The goal of training

w1

w2

Input nodes

Output node

IN

Σ

g=sign
a

a=g(IN)x1

x2

The output node gets
activated only if Σxiwi+t>0

In 2D this can be expressed
as points above and below
the line: w1x1+w2x2+t

In N dimensions – it is a
hyperplane, which separates
all positive examples from
negative examples

Objective of Perceptron learning:
To determine the optimal values of weights to
separate all labeled instances by a hyperplane

1 t

Perceptron learned AND NOT

1

x1

x2

g
-1

t=-0.5
y= x1 AND NOT x2

x1 x2 y

0 0 <0

0 1 <0

1 0 ≥0

1 1 <0

y=x1w1+x2w2+t
Let t=-0.5, w1=1, w2=-1
y(0,0)=-0.5
y(0.1)=-1.5
y(1.0)=0.5
y(1.1)=-0.5

This means:
Perceptron found a separating line

1

x1

x2

g
-1

t=-0.5

y= x1 AND NOT x2

x1 x2 y

0 0 <0

0 1 <0

1 0 ≥0

1 1 <0

x1

y=x1w1+x2w2+t
t=-0.5, w1=1, w2=-1
x1-x2-0.5=0
x2=x1-0.5

x2

-
+

Perceptron can learn only
linearly-separable functions

x2

x1

I1

I2

AND

x2

x1

I1

I2
OR

Experiment with perceptron.py

Non linearly-separable:
exclusive OR (XOR)

x2

x1

I1

I2

XOR

One possible solution – add more neurons

x1 x2 z

0 0 0

0 1 1

1 0 1

1 1 0

XOR table

Adding neuron z

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)

y1=x1 OR x2

x1 x2 y1

0 0 0

0 1 1

1 0 1

1 1 1

y2=not (x1 AND x2)

x1 x2 y2

0 0 1

0 1 1

1 0 1

1 1 0

z=y1 AND y2

y1 y2 z

0 1 0

1 1 1

1 1 1

1 0 0

Combining outputs of two perceptrons

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)

y1=x1 OR x2

x1 x2 y1

0 0 0

0 1 1

1 0 1

1 1 1

y2=not (x1 AND x2)

x1 x2 y2

0 0 1

0 1 1

1 0 1

1 1 0

z=y1 AND y2

y1 y2 z

0 1 0

1 1 1

1 1 1

1 0 0

2 small perceptrons will be
connected to the third, which
will combine their values

XOR ANN topology
x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)

z

x1

x2

y1

y2

XOR ANN: weights

z

x1

x2

y1

y2

-1/2
1

1

-1

-1

1

1

-3/2

x1 x2 y1 y2 z

0 0 -3/20 1

0 1 1/21 1

1 0 1/21 1

1 1 3/21 0

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2

XOR ANN: y1

z

x1

x2

y1

y2

-1/2
1

1

-1

-1

1

1

-3/2

x1 x2 y1 y2 z

0 0 -1/20 1

0 1 1/21 1

1 0 1/21 1

1 1 3/21 0

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2

XOR ANN: y2

z

x1

x2

y1

y2

-1/2
1

1

-1

-1

1

1

-3/2

x1 x2 y1 y2 z

0 0 -1/20 3/21

0 1 1/21 1/21

1 0 1/21 1/21

1 1 3/21 -1/20

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2

XOR ANN: z

z

x1

x2

y1

y2

-1/2
1

1

-1

-1

1

1

-3/2

x1 x2 y1 y2 z

0 0 -1/20 3/21 -1/20

0 1 1/21 1/21 1/21

1 0 1/21 1/21 1/21

1 1 3/21 -1/20 -1/20

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2

Separating with 2 linear separators

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 and x2)

z

x1

x2

y1

y2

-1/2
1

-1

1

-1

1

1
3/2

-3/2

y1=x1+x2-1/2
y2=-x1-x2+3/2

Multi-layer Perceptron

• Added: hidden nodes

• Nodes are organized into layers. Edges are directed and
carry weight

• No connections inside the layer

Input layer Hidden layer
1

Hidden layer
2

Output layer

Multi-layer Perceptron vs. regular
computing

Hidden layer
1

Hidden layer
2

Some useful
computations

Inputs Outputs

1st layer draws linear
boundaries

2nd layer combines the
boundaries

3rd layer can generate arbitrarily
complex boundaries

What do we gain from the extra layers

Phases of learning

• Training the MLP consists of two parts:

• Working out what the outputs are for the given inputs
and the current weights – Forward phase

• Updating the weights according to the error, which is a
function of the difference between the outputs and the
targets – Backward phase

Going forward did not change

• We start at the left by filling in the values for the input
vector

• We then use the input values and the first level of weights
to calculate the activations of each neuron in the hidden
layer

• Then we use those activations and the next set of weights to
calculate the activations of the output layer

• Now that we’ve got the outputs of the network, we can
compare them to the targets and compute the error

Learning weights in 3-layer
networks: from hidden to output
• From the delta rule, we know how to adjust weights

between the output and the hidden layer

• But if we only apply this rule, the weights from input to
hidden units never change!

• We do not have the value of error for hidden units

So how do we adjust weights
between input and hidden
layer?

Forward pass phase: computes ‘functional signal’,
feedforward propagation of input pattern signals through
network

Backward pass phase: computes ‘error signal’,

propagates the error backwards through network
starting at output units (where the error is the difference
between actual and desired output values)

Backpropagation learning
algorithm ‘BP’
Rumelhart, Hinton, Williams, McClelland (1986)

We need a new error function

• We now compute the total error of the network using

𝐸 𝑡, 𝑦 =
1

2
෍

𝑘=1

𝑁

(𝑦𝑘 − 𝑡𝑘)
2

• If we differentiate an error function with respect to
each weight, we get the gradient of the error.

• Since the purpose of learning is to minimize the error,
following the error function downhill (in other words,
in the direction of the negative gradient) will give us
what we want.

• This is called “gradient descent”

We need a new activation
function
• We also need to change the activation functions to

something which is differentiable

• We can use more complex non-linear functions: sigmoidal
functions

Sigmoidal (logistic) function-common in ANN

Note: when IN = 0, f = 0.5

The sigmoidal function
gives a value in range of 0
to 1.

Alternatively can use
tanh(ka) which has the
same shape but in range
-1 to 1.

Non-linear activation functions

where k is a positive
constant)(

1

1

))(exp(1

1
))((

tak

i

i
ietak

tag
−

+
=

−+
=

Backpropagation: intuition

• The output nodes tell to hidden nodes that there was an error

• The hidden nodes need to decide how to adjust their weights to
decrease an error

• Each hidden node needs to calculate its own error to back-
propagate it to the input layer

Backpropagation: intuition

• The node calculates its own error (by taking partial derivative of
error function by its weight) and pushes it back to the input layer
nodes, which need to adjust their weights

• The idea is to find out which of the connections is the most to
blame for the error and to adjust its outgoing weight more

Learning weights in 3-layer networks:
distributing credit (blame)

• The goal is to distribute error from an output node to all
the hidden units connected to it, weighted by this
connection.

• i.e. a hidden unit receives a delta from each output unit
weighted with (=multiplied by) the weight of the
connection between these units.

Backward Pass

Weights here can be viewed as providing
degree of ‘credit’ or ‘blame’ to hidden units

Dj
Dk

di

wki wji

di = g’(ai) Sj wji Dj

Weight adjustment for non-linear
activation functions

Derivative of activation
function

)(
1

1

))(exp(1

1
))((

tak

i

i
ietak

tag
−

+
=

−+
=

))(('))()(()(tagtytdt iiii −=D

1. Apply an input vector (training record) and calculate all activation
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden
layer to outputs using:

))(('))()(()(tagtytdt iiii −=D

D=
k

kikii wttugt)())((')(d

)()()()1(

)()()()1(

tzttwtw

txttvtv

jiijij

jiijij

D+=+

+=+



d

BP algorithm

1. Apply an input vector (training record) and calculate all activation
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden
layer to outputs using:

))(('))()(()(tagtytdt iiii −=D

D=
k

kikii wttugt)())((')(d

)()()()1(

)()()()1(

tzttwtw

txttvtv

jiijij

jiijij

D+=+

+=+



d

BP algorithm

t for time –
training epoch

1. Apply an input vector (training record) and calculate all activation
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden
layer to outputs using:

))(('))()(()(tagtytdt iiii −=D

D=
k

kikii wttugt)())((')(d

)()()()1(

)()()()1(

tzttwtw

txttvtv

jiijij

jiijij

D+=+

+=+



d

BP algorithm

d for desired output –
target value

1. Apply an input vector (training record) and calculate all activation
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden
layer to outputs using:

))(('))()(()(tagtytdt iiii −=D

D=
k

kikii wttugt)())((')(d

)()()()1(

)()()()1(

tzttwtw

txttvtv

jiijij

jiijij

D+=+

+=+



d

BP algorithm

Derivative of the activation
function for output node i

1. Apply an input vector (training record) and calculate all activation
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden
layer to outputs using:

))(('))()(()(tagtytdt iiii −=D

D=
k

kikii wttugt)())((')(d

)()()()1(

)()()()1(

tzttwtw

txttvtv

jiijij

jiijij

D+=+

+=+



d

BP algorithm

Derivative of the activation
function a hidden node i

1. Apply an input vector (training record) and calculate all activation
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden
layer to outputs using:

))(('))()(()(tagtytdt iiii −=D

D=
k

kikii wttugt)())((')(d

)()()()1(

)()()()1(

tzttwtw

txttvtv

jiijij

jiijij

D+=+

+=+



d

BP algorithm

That will give the
proportional error
for each neuron
in hidden layer:
the degree of
blame

1. Apply an input vector (training record) and calculate all activation
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden
layer to outputs using:

))(('))()(()(tagtytdt iiii −=D

D=
k

kikii wttugt)())((')(d

)()()()1(

)()()()1(

tzttwtw

txttvtv

jiijij

jiijij

D+=+

+=+



d

BP algorithm

Now when we know the error
both for the output nodes
and for hidden nodes, we can
adjust weights between all 3
layers

Since degree of weight change is proportional to derivative of
activation function,

weight changes will be greatest when units receive mid-range
functional signal and 0 (or very small) on extremes.
This means that by saturating a neuron (making the activation
large) the weight can be forced to converge: do not change
anymore - learned.

D=
k

kikii wttugt)())((')(d

))(('))()(()(tagtytdt iiii −=D

To derive the formula for
backpropagation:

• See attached book chapter for mathematical details

How good is a Multi-Layer model?

For any given constant e and continuous function

h (x1,...,xm), there exists a three layer ANN with the
property that

| h (x1,...,xm) - H(x1,...,xm) |< e

where H (x1 , ... , xm)= S k
i=1 ai f (S m

j=1 wijxj + bi)

Universal Approximation Theorem

Very powerful model

• With sigmoidal activation functions we can show that a 3-
layer net can approximate any function to arbitrary
accuracy: property of Universal Approximation

• Proof by thinking of superposition of sigmoids

• Not practically useful as need arbitrarily large number of
units but more of an existence proof

• Same is true for a 2-layer net providing function is
continuous and from one finite dimensional space to
another

• Experiment with mlp.py

• See that it can learn the XOR concept easily

Demo: breast cancer diagnosis

• Dataset:
https://archive.ics.uci.edu/ml/data
sets/Breast+Cancer+Wisconsin+(Di
agnostic)

• Features are computed from a
digitized image of a fine needle
aspirate (FNA) of a breast mass.

• Diagnosing breast cancer from
mammograms is a very hard non-
trivial task

Run breast_cancer_diagnosis.py and see how MLP learns
to diagnose breast cancer

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

Applications of ANNs

• Credit card frauds

• Kinect – gesture recognition

• Facial recognition

• Self-driving cars

• …

Example:
Handwriting recognition

Dataset: collection of
handwritings

Attributes: binary values (on-off)
of each dot in 2D point matrix

Class: actual letter meant by the
writer

Example:
Handwriting recognition

Sample training record for class
capital letter A

Example:
Handwriting recognition

Another training record for class
capital letter A

NN for handwriting recognition

• Each dot feeds its value (0 or 1) to a corresponding input
neuron

• Each input neuron is connected to the hidden layer

• Each hidden layer neuron is connected to 23 (suppose only
for capital English letters) output neurons

A B C D E … Output layer

NN for handwriting recognition

• Multi-class problems are solved by competitive learning

• Initially all weights are random, and each output neuron gets
some value

• The class is assigned by the letter with maximum value

• The weights are adjusted in such a way that to increase the
correct classification, and to decrease the incorrect ones

A B C D E … Output layer

NN for handwriting recognition

• Each dot is a dimension, and each training record is a
vector in 23-D hyperplane

A

B

Expected to be A, but falls
closer to B
Slightly move vector
towards A away from B

Deficiencies of ANNs

• Provide no more insight why the decision was made than
dissecting human brain helps to understand how it makes
decisions

• Updating with new info – stale – no rules, degrades
gracefully.

• As in humans – inference from previous knowledge slows
the process of learning new patterns

Make computers as capable as
humans?

• Brain is highly complex, non-linear, massively-parallel system

• Response of integrated response circuit:

1 nanosecond = 10-9 sec

• Response of neuron

1 millisecond = 10-3 sec

• The only advantage of the brain: massively parallel – 10
billion neurons with 60 trillions of connections

Artificial neural network is abstract
– media-independent

• To simulate the brain we could construct thousands of op-amp
circuits in parallel

• We can also simulate them using a program that is executed on a
conventional serial processor.

• The solutions are theoretically equivalent since a neuron's medium
does not affect its operation.

• By simulating the neural behavior, we created a virtual machine that
is functionally identical to a machine that would have been
prohibitively complex and expensive to build.

ANN implementation in serial processors
is not as powerful as human brain

• We can simulate parallel circuits using a program executing on a
conventional serial processor.

• A computer's flexibility makes the creation of one hundred neurons
as easy as the creation of one neuron.

• The drawback is that the simulated machine is slower by many
orders of magnitude than a real neural network since the simulation
is being done in a serial manner by the CPU.

