
Perceptron
Lecture 09.01

There is a fantastic existence proof that learning is 
possible, which is the bag of water and electricity 
(together with a few trace chemicals) sitting between 
your ears.

Stephen Marsland. “Machine learning: an algorithmic 
perspective”



How computer works

Some useful 
computations

Inputs
Outputs



How brain works: neurons

Neuron is an electrically excitable cell that processes and 
transmits information by electrical and chemical signaling.

Input

Output



Neurons: signal summation

• Dendrite(s) receive an electric charge.

• The strengths of all the received charges are added 
together (spatial and temporal summation). 

• The aggregate value is then passed to the soma (cell body) 
to axon hillock.



Neurons: activation threshold

• If the aggregate input is greater than the axon hillock's 
threshold value, then the neuron fires, and an output signal 
is transmitted down the axon. 



Neurons: the output signal is 
constant
• The strength of the output is constant, regardless of 

whether the input was just above the threshold, or a 
hundred times as great. 

• This uniformity is critical in an analogue device such as a 
brain where small errors can snowball, and where error 
correction is more difficult.



How real neurons communicate

• The signal is transmitted to other 
neurons through synapses.

• The physical and neurochemical 
characteristics of each synapse 
determine the strength and polarity of 
the new input signal. 

• This is where the brain is the most 
flexible: neuroplasticity.



Modeling brain with networks

• The complicated biological phenomena may be modeled by 
a very simple model: nodes model neurons and edges
model connections. 

• The input nodes each have a weight that they contribute to 
the neuron, if the input is active. This corresponds to the 
strength of a synaptic connection.
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Modeling brain with networks

• Node takes input and triggers other nodes through 
connections

• Node D needs to think if it wants to propagate the signal

• The decision is made from the output of threshold function 
(0 or 1)
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Mathematical model of a neuron 
(McCulloch and Pitt, 1943)
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Terminology
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• An input vector x is the data given as one input to the 
processing “neuron” (corresponds to afferent neurons that 
transmit information to the brain).



Terminology
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• Weights wi , are the weighted connections between input 
neurons and the processing neuron (these weights are analogous 
to the strength of synaptic connections in the brain). 

• They are arranged into a matrix W.



Terminology
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• The output y, shows the resulting action of processing neuron: neuron 

fires(1) or not(0).

• We can write y(x,W) to remind that the output depends on the inputs to 

the algorithm and the current set of weights of the network.



Terminology
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• The summation function IN sums all the signals from the input 
vector multiplied by weights, and feeds the result into 
activation function g.

Combination function: 
mostly weighted sum



Terminology
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• The activation function g(·) is a mathematical function that describes the 

firing of the neuron as a response to the weighted inputs.

• As in real brain, this is a threshold function: neuron either fires, or not.

Activation function should 
be threshold function



Terminology
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Activation function should 
be threshold function

The simplest threshold function: sign
g(x)=0 if x<=0
g(x)=1 if (x>0) (neuron fires)



Neuron for OR function
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g(x)=0 if x<=0
g(x)=1 if (x>0)
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Neuron for AND function
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Input vector (x)

Output: 0 or 1 IN

Σ
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g
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“Neuron” 

y

g(x)=0 if x<=1
g(x)=1 if (x>1)

x1 x2 y

0 0 0

0 1 0

1 0 0

1 1 1

x1 x2 IN g y

0 0 0 0 0

0 1 1 0 0

1 0 1 0 0

1 1 2 1 1

Just changed 
the threshold 
for firing from 

0 to 1



How do we learn: brain

• Hebbian theory: “Cells that fire 
together wire together”

• Persistent changes in molecular 
structures alter synaptic 
transmission between neurons

• This corresponds to changing 
weights in Neural Network



Neuron with learning capabilities: 
Perceptron (Rosenblatt, 1958) 
• The network can learn its own weights.

• It is presented with a set of inputs and predefined outputs.

• The actual output is different from the predefined output by 
some error.

• Adjust the connection weights to produce a smaller error.



Teaching perceptron the concept 
of AND

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

Consider the following simple labeled dataset:

Each data record has 2 attributes 
–X1 and X2, and the record is 
classified into a binary class

We want to train Perceptron so it will be able to predict the 
correct label based on the value of X1, X2.

grandma holiday present



Learning algorithm: example

w1=0.2

w2=-0.5 IN

Σ

g
a

a=g(IN)x1

x2

initialize the weights to random values: for example W = [0.2, -0.5]
total error E = ∞
while E != 0:

E = 0
for each record

present network with input vector
compute output y according to g
for each xi, wi compute classification error Δ wi = (t – y)*xi

increase or decrease wi to get closer to the target
E += Δ wi

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

y

Dataset



Learning step: example

w1=0.2

w2=-0.5 IN

Σ

g
a

a=g(IN)x1

x2

showing vector [1,1]
IN = 0.2 – 0.5
G(IN) < 0 → y=0 (Neuron does not fire)
Our target t = 1
Δ w1 = (t – y)*x1 = 1
We need to increase w1 to get closer  to the desired target t

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

y



Training Perceptron: 
learning rate

Δ =T - Y

T – desired output 
(target)
Y – actual output

The delta rule:
wi ← wi + η x xi

x Δ

η (eta) represents the 
“learning rate” – the speed 
with which we move in the 
direction of the target

But do not adjust by the entire value 
of error, just move slightly into desired 
direction



Bias input

w1=0.2

w2=-0.5 IN

Σ

g
a

a=g(IN)x1

x2

showing vector [0,0]
IN = 0

• No matter how we adjust the weights the result never changes!
• To avoid this situation we add a “bias” node x0 with the constant 

value (for example -1), so we could adjust its weight w0 to move 
the value of y closer to t in case that all other values in the input 
vector are 0

X1 X2 Y (Class)

0 0 0

0 1 0

1 0 0

1 1 1

y

-1
t=0.3



Using bias input: example

0.3

0.3

0.3

IN
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g=sign
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x1 x2 x3 y

1 0 0 -1

1 0 1 1

1 1 0 1

1 1 1 1

0 0 1 -1

0 1 0 -1

0 1 1 1

0 0 0 -1

g=sign(Σ+0.4)

y=sign(w1x1+w2x2+w3x3+t)

1
t=0.4



The goal of training

w1

w2

Input nodes

Output node

IN

Σ

g=sign
a

a=g(IN)x1

x2

The output node gets 
activated only if Σxiwi+t>0

In 2D this can be expressed 
as points above and below 
the line: w1x1+w2x2+t

In N dimensions – it is a 
hyperplane, which separates 
all positive examples from 
negative examples 

Objective of Perceptron learning:  
To determine the optimal values of weights to 
separate all labeled instances by a hyperplane

1 t



Perceptron learned AND NOT

1

x1

x2

g
-1

t=-0.5
y= x1 AND NOT x2

x1 x2 y

0 0 <0

0 1 <0

1 0 ≥0

1 1 <0

y=x1w1+x2w2+t
Let t=-0.5, w1=1, w2=-1
y(0,0)=-0.5
y(0.1)=-1.5
y(1.0)=0.5
y(1.1)=-0.5



This means:
Perceptron found a separating line
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y= x1 AND NOT x2

x1 x2 y

0 0 <0

0 1 <0

1 0 ≥0
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y=x1w1+x2w2+t
t=-0.5, w1=1, w2=-1
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Perceptron can learn only 
linearly-separable functions
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OR



Experiment with perceptron.py



Non linearly-separable: 
exclusive OR (XOR)

x2

x1

I1

I2

XOR

One possible solution – add more neurons

x1 x2 z

0 0 0

0 1 1

1 0 1

1 1 0

XOR table



Adding neuron z

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

y1=x1 OR x2

x1 x2 y1

0 0 0

0 1 1

1 0 1

1 1 1

y2=not (x1 AND x2)

x1 x2 y2

0 0 1

0 1 1

1 0 1

1 1 0

z=y1 AND y2

y1 y2 z

0 1 0

1 1 1

1 1 1

1 0 0



Combining outputs of two perceptrons

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

y1=x1 OR x2

x1 x2 y1

0 0 0

0 1 1

1 0 1

1 1 1

y2=not (x1 AND x2)

x1 x2 y2

0 0 1

0 1 1

1 0 1

1 1 0

z=y1 AND y2

y1 y2 z

0 1 0

1 1 1

1 1 1

1 0 0

2 small perceptrons will be 
connected to the third, which 
will combine their values



XOR ANN topology
x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

z

x1

x2

y1

y2



XOR ANN: weights
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x1 x2 y1 y2 z

0 0 -3/20 1

0 1 1/21 1

1 0 1/21 1

1 1 3/21 0

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2



XOR ANN: y1
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x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2



XOR ANN: y2
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x1 x2 y1 y2 z
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0 1 1/21 1/21

1 0 1/21 1/21

1 1 3/21 -1/20

x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2



XOR ANN: z
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x1 XOR x2 = x1 OR x2 AND NOT (x1 AND x2)  

g(x)=0 if x<=0
g(x)=1 if (x>0)

Threshold is 0

3/2



Separating with 2 linear separators

x2

x1

x1 XOR x2 = x1 OR x2 AND NOT (x1 and x2)  
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y1=x1+x2-1/2
y2=-x1-x2+3/2



Multi-layer Perceptron

• Added: hidden nodes

• Nodes are organized into layers. Edges are directed and 
carry weight

• No connections inside the layer

Input layer Hidden layer 
1

Hidden layer 
2

Output layer



Multi-layer Perceptron vs. regular 
computing

Hidden layer 
1

Hidden layer 
2

Some useful 
computations

Inputs Outputs



1st layer draws linear 
boundaries

2nd layer combines the 
boundaries

3rd layer can generate arbitrarily 
complex boundaries

What do we gain from the extra layers



Phases of learning

• Training the MLP consists of two parts: 

• Working out what the outputs are for the given inputs 
and the current weights – Forward phase

• Updating the weights according to the error, which is a 
function of the difference between the outputs and the 
targets – Backward phase



Going forward did not change

• We start at the left by filling in the values for the input 
vector

• We then use the input values and the first level of weights 
to calculate the activations of each neuron in the hidden 
layer

• Then we use those activations and the next set of weights to 
calculate the activations of the output layer

• Now that we’ve got the outputs of the network, we can 
compare them to the targets and compute the error



Learning weights in 3-layer 
networks: from hidden to output
• From the delta rule, we know how to adjust weights 

between the output and the hidden layer

• But if we only apply this rule, the weights from input to 
hidden units never change!

• We do not have the value of error for hidden units



So how do we adjust weights 
between input and hidden
layer?



Forward pass phase: computes ‘functional signal’, 
feedforward propagation of input pattern signals through 
network

Backward pass phase:  computes ‘error signal’, 

propagates the error backwards through network 
starting at output units (where the error is the difference 
between actual and desired output values) 

Backpropagation learning 
algorithm ‘BP’
Rumelhart, Hinton, Williams, McClelland (1986)



We need a new error function

• We now compute the total error of the network using 

𝐸 𝑡, 𝑦 =
1

2
෍

𝑘=1

𝑁

(𝑦𝑘 − 𝑡𝑘)
2

• If we differentiate an error function with respect to 
each weight, we get the gradient of the error. 

• Since the purpose of learning is to minimize the error, 
following the error function downhill (in other words, 
in the direction of the negative gradient) will give us 
what we want.

• This is called “gradient descent”



We need a new activation 
function
• We also need to change the activation functions to 

something which is differentiable

• We can use more complex non-linear functions: sigmoidal 
functions



Sigmoidal (logistic) function-common in  ANN

Note: when IN  = 0,  f = 0.5

The sigmoidal function 
gives a value in range of 0 
to 1. 

Alternatively can use 
tanh(ka) which has the  
same shape but in range 
-1 to 1.

Non-linear activation functions

where k is a positive 
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Backpropagation: intuition

• The output nodes tell to hidden nodes that there was an error

• The hidden nodes need to decide how to adjust their weights to 
decrease an error

• Each hidden node needs to calculate its own error to back-
propagate it to the input layer



Backpropagation: intuition

• The node calculates its own error (by taking partial derivative of 
error function by its weight) and pushes it back to the input layer 
nodes, which need to adjust their weights

• The idea is to find out which of the connections is the most to 
blame for the error and to adjust its outgoing weight more



Learning weights in 3-layer networks: 
distributing credit (blame)

• The goal is to distribute error from an output node to all 
the hidden units connected to it, weighted by this 
connection. 

• i.e. a hidden unit receives a delta from each output unit 
weighted with (=multiplied by) the weight of the 
connection between these units.



Backward Pass

Weights here can be viewed as providing 
degree of ‘credit’ or ‘blame’ to hidden units

Dj
Dk

di

wki wji

di = g’(ai) Sj wji Dj



Weight adjustment for non-linear 
activation functions

Derivative of activation 
function
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1. Apply an input vector (training record) and calculate all activation 
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden 
layer to outputs using:
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BP algorithm



1. Apply an input vector (training record) and calculate all activation 
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden 
layer to outputs using:
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t for time –
training epoch



1. Apply an input vector (training record) and calculate all activation 
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden 
layer to outputs using:
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d for desired output –
target value



1. Apply an input vector (training record) and calculate all activation 
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden 
layer to outputs using:
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Derivative of the activation 
function for output node i



1. Apply an input vector (training record) and calculate all activation 
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden 
layer to outputs using:
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Derivative of the activation 
function a hidden node i



1. Apply an input vector (training record) and calculate all activation 
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden 
layer to outputs using:
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That will give the 
proportional error 
for each neuron 
in hidden layer: 
the degree of 
blame



1. Apply an input vector (training record) and calculate all activation 
functions, the output and the error
2. Evaluate Dk for all output units via:

(Note similarity to perceptron learning algorithm)
3. Backpropagate Dks to get error terms d for hidden layers using:

4. Change the weights from inputs to hidden layer and from hidden 
layer to outputs using:
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Now when we know the error 
both for the output nodes 
and for hidden nodes, we can 
adjust weights between all 3 
layers



Since degree of weight change is proportional to derivative of 
activation function, 

weight changes will be greatest when units receive mid-range 
functional signal and 0 (or very small) on extremes. 
This means that by saturating a neuron (making the activation 
large) the weight can be forced to converge: do not change 
anymore - learned.
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To derive the formula for 
backpropagation:

• See attached book chapter for mathematical details



How good is a Multi-Layer model?  

For any given constant e  and continuous function 

h (x1,...,xm),  there  exists a three layer ANN with the 
property that 

| h (x1,...,xm) - H(x1,...,xm) |< e 

where H ( x1 , ... , xm )= S k 
i=1  ai f ( S m

j=1 wijxj + bi )

Universal Approximation Theorem



Very powerful model

• With sigmoidal activation functions we can show that a 3-
layer net can approximate any function to arbitrary 
accuracy: property of Universal Approximation

• Proof by thinking of superposition of sigmoids

• Not practically useful as need arbitrarily large number of 
units but more of an existence proof

• Same is true for a 2-layer net providing function is 
continuous and from one finite dimensional space to 
another 



• Experiment with mlp.py

• See that it can learn the XOR concept easily



Demo: breast cancer diagnosis

• Dataset: 
https://archive.ics.uci.edu/ml/data
sets/Breast+Cancer+Wisconsin+(Di
agnostic)

• Features are computed from a 
digitized image of a fine needle 
aspirate (FNA) of a breast mass.

• Diagnosing breast cancer from 
mammograms is a very hard non-
trivial task

Run breast_cancer_diagnosis.py and see how MLP learns 
to diagnose breast cancer

https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)


Applications of ANNs

• Credit card frauds

• Kinect – gesture recognition

• Facial recognition

• Self-driving cars

• …



Example: 
Handwriting recognition

Dataset: collection of 
handwritings

Attributes: binary values (on-off) 
of each dot in 2D point matrix

Class: actual letter meant by the 
writer



Example: 
Handwriting recognition

Sample training record for class 
capital letter A



Example: 
Handwriting recognition

Another training record for class 
capital letter A



NN for handwriting recognition

• Each dot feeds its value (0 or 1) to a corresponding input 
neuron

• Each input neuron is connected to the hidden layer

• Each hidden layer neuron is connected to 23 (suppose only 
for capital English letters) output neurons

A B C D E … Output layer



NN for handwriting recognition

• Multi-class problems are solved by competitive learning

• Initially all weights are random, and each output neuron gets 
some value

• The class is assigned by the letter with maximum value

• The weights are adjusted in such a way that to increase the 
correct classification, and to decrease the incorrect ones

A B C D E … Output layer



NN for handwriting recognition

• Each dot is a dimension, and each training record is a 
vector in 23-D hyperplane

A

B

Expected to be A, but falls 
closer to B
Slightly move vector 
towards A away from B



Deficiencies of ANNs

• Provide no more insight why the decision was made than 
dissecting human brain helps to understand how it makes 
decisions

• Updating with new info – stale – no rules, degrades 
gracefully. 

• As in humans – inference from previous knowledge slows 
the process of learning new patterns



Make computers as capable as 
humans?

• Brain is highly complex, non-linear, massively-parallel system

• Response of integrated response circuit:

1 nanosecond = 10-9 sec

• Response of neuron 

1 millisecond = 10-3 sec

• The only advantage of the brain: massively parallel – 10 
billion neurons with 60 trillions of connections



Artificial neural network is abstract 
– media-independent

• To simulate the brain we could construct thousands of op-amp 
circuits in parallel

• We can also simulate them using a program that is executed on a 
conventional serial processor. 

• The solutions are theoretically equivalent since a neuron's medium 
does not affect its operation. 

• By simulating the neural behavior, we created a virtual machine that 
is functionally identical to a machine that would have been 
prohibitively complex and expensive to build. 



ANN implementation in serial processors 
is not as powerful as human brain 

• We can simulate parallel circuits using a program executing on a 
conventional serial processor. 

• A computer's flexibility makes the creation of one hundred neurons 
as easy as the creation of one neuron. 

• The drawback is that the simulated machine is slower by many 
orders of magnitude than a real neural network since the simulation 
is being done in a serial manner by the CPU.


