
The Multi-layer Perceptron � 101

well the network is learning during training. The ratio between the sizes of the three
groups depends on how much data you have, but is often around 50:25:25. If you do
not have enough data for this, use cross-validation instead.

Select a network architecture You already know how many input nodes there will be,
and how many output neurons. You need to consider whether you will need a hidden
layer at all, and if so how many neurons it should have in it. You might want to
consider more than one hidden layer. The more complex the network, the more data
it will need to be trained on, and the longer it will take. It might also be more subject
to overfitting. The usual method of selecting a network architecture is to try several
with different numbers of hidden nodes and see which works best.

Train a network The training of the neural network consists of applying the Multi-layer
Perceptron algorithm to the training data. This is usually run in conjunction with
early stopping, where after a few iterations of the algorithm through all of the training
data, the generalisation ability of the network is tested by using the validation set.
The neural network is very likely to have far too many degrees of freedom for the
problem, and so after some amount of learning it will stop modelling the generating
function of the data, and start to fit the noise and inaccuracies inherent in the training
data. At this stage the error on the validation set will start to increase, and learning
should be stopped.

Test the network Once you have a trained network that you are happy with, it is time to
use the test data for the first (and only) time. This will enable you to see how well the
network performs on some data that it has not seen before, and will tell you whether
this network is likely to be usable for other data, for which you do not have targets.

4.6 DERIVING BACK-PROPAGATION
This section derives the back-propagation algorithm. This is important to understand how
and why the algorithm works. There isn’t actually that much mathematics involved except
some slightly messy algebra. In fact, there are only three things that you really need to
know. One is the derivative (with respect to x) of 1

2 x2, which is x, and another is the chain
rule, which says that dy

dx = dy
dt

dt
dx . The third thing is very simple:

dy
dx = 0 if y is not a function

of x. With those three things clear in your mind, just follow through the algebra, and you’ll
be fine. We’ll work in simple steps.

4.6.1 The Network Output and the Error
The output of the neural network (the end of the forward phase of the algorithm) is a
function of three things:

• the current input (x)

• the activation function g(·) of the nodes of the network
• the weights of the network (v for the first layer and w for the second)

We can’t change the inputs, since they are what we are learning about, nor can we change
the activation function as the algorithm learns. So the weights are the only things that we
can vary to improve the performance of the network, i.e., to make it learn. However, we do
need to think about the activation function, since the threshold function that we used for



102 � Machine Learning: An Algorithmic Perspective

the Perceptron is not differentiable (it has a discontinuity at 0). We’ll think about a better
one in Section 4.6.3, but first we’ll think about the error of the network. Remember that we
have run the algorithm forwards, so that we have fed the inputs (x) into the algorithm, used
the first set of weights (v) to compute the activations of the hidden neurons, then those
activations and the second set of weights (w) to compute the activations of the output
neurons, which are the outputs of the network (y). Note that I’m going to use i to be an
index over the input nodes, j to be an index over the hidden layer neurons, and k to be an
index over the output neurons.

4.6.2 The Error of the Network
When we discussed the Perceptron learning rule in the previous chapter we motivated it
by minimising the error function E =

∑N
k=1 yk − tk. We then invented a learning rule that

made this error smaller. We are going to do much better this time, because everything is
computed from the principles of gradient descent.

To begin with, let’s think about the error of the network. This is obviously going to
have something to do with the difference between the outputs y and the targets t, but I’m
going to write it as E(v, w) to remind us that the only things that we can change are the
weights v and w, and that changing the weights changes the output, which in turn changes
the error.

For the Perceptron we computed the error as E =
∑N

k=1 yk − tk, but there are some
problems with this: if tk > yk, then the sign of the error is different to when yk > tk, so if
we have lots of output nodes that are all wrong, but some have positive sign and some have
negative sign, then they might cancel out. Instead, we’ll choose the sum-of-squares error
function, which calculates the difference between yk and tk for each node k, squares them,
and adds them together (I’ve missed out the v in E(w) because we don’t use them here):

E(w) =
1
2

N∑
k=1

(yk − tk)2 (4.20)

=
1
2

N∑
k=1

⎡
⎣g

⎛
⎝ M∑

j=0
wjkaj

⎞
⎠ − tk

⎤
⎦

2

(4.21)

The second line adds in the input from the hidden layer neurons and the second-layer
weights to decide on the activations of the output neurons. For now we’re going to think
about the Perceptron and index the input nodes by i and the output nodes by k, so Equation
(4.21) will be replaced by:

1
2

N∑
k=1

[
g

(
L∑

i=0
wikxi

)
− tk

]2

. (4.22)

Now we can’t differentiate the threshold function, which is what the Perceptron used
for g(·), because it has a discontinuity (sudden jump) at the threshold value. So I’m going
to miss it out completely for the moment. Also, for the Perceptron there are no hidden
neurons, and so the activation of an output neuron is just yκ =

∑L
i=0 wiκxi where xi is the

value of an input node, and the sum runs over the number of input nodes, including the
bias node.

We are going to use a gradient descent algorithm that adjusts each weight wικ for fixed



The Multi-layer Perceptron � 103

values of ι and κ, in the direction of the negative gradient of E(w). In what follows, the no-
tation ∂ means the partial derivative, and is used because there are lots of different functions
that we can differentiate E with respect to: all of the different weights. If you don’t know
what a partial derivative is, think of it as being the same as a normal derivative, but taking
care that you differentiate in the correct direction. The gradient that we want to know is
how the error function changes with respect to the different weights:

∂E

∂wικ
=

∂

∂wικ

(
1
2

N∑
k=1

(yk − tk)2
)

=
1
2

N∑
k=1

2(yk − tk)
∂

∂wικ

(
yk −

L∑
i=0

wiκxi

)
(4.23)

(4.24)

Now tk is not a function of any of the weights, since it is a value given to the algorithm,
so ∂tk

∂wικ
= 0 for all values of k, ι, κ, and the only part of

∑L
i=0 wiκxi that is a function of

wικ is when i = ι, that is wικ itself, which has derivative 1. Hence:

∂E

∂wικ
=

N∑
k=1

(tk − yk)(−xι). (4.25)

Now the idea of the weight update rule is that we follow the gradient downhill, that is,
in the direction − ∂E

∂wικ
. So the weight update rule (when we include the learning rate η) is:

wικ ← wικ + η(tκ − yκ)xι, (4.26)

which hopefully looks familiar (see Equation (3.3)). Note that we are computing yκ differ-
ently: for the Perceptron we used the threshold activation function, whereas in the work
above we ignored the threshold function. This isn’t very useful if we want units that act
like neurons, because neurons either fire or do not fire, rather than varying continuously.
However, if we want to be able to differentiate the output in order to use gradient descent,
then we need a differentiable activation function, so that’s what we’ll talk about now.

4.6.3 Requirements of an Activation Function
In order to model a neuron we want an activation function that has the following properties:

• it must be differentiable so that we can compute the gradient

• it should saturate (become constant) at both ends of the range, so that the neuron
either fires or does not fire

• it should change between the saturation values fairly quickly in the middle

There is a family of functions called sigmoid functions because they are S-shaped (see
Figure 4.5) that satisfy all those criteria perfectly. The form in which it is generally used is:

a = g(h) =
1

1 + exp(−βh)
, (4.27)

where β is some positive parameter. One happy feature of this function is that its derivative
has an especially nice form:



104 � Machine Learning: An Algorithmic Perspective

g′(h) =
dg

dh
=

d

dh
(1 + e−βh)−1 (4.28)

= −1(1 + e−βh)−2 de−βh

dh
(4.29)

= −1(1 + e−βh)−2(−βe−βh) (4.30)

=
βe−βh

(1 + e−βh)2
(4.31)

= βg(h)(1 − g(h)) (4.32)
= βa(1 − a) (4.33)

We’ll be using this derivative later. So we’ve now got an error function and an activation
function that we can compute derivatives of. We will consider some other possible activa-
tion functions for the output neurons in Section 4.6.5 and an alternative error function in
Section 4.6.6. The next thing to do is work out how to use them in order to adjust the
weights of the network.

4.6.4 Back-Propagation of Error
It is now that we’ll need the chain rule that I reminded you of earlier. In the form that we
want, it looks like this:

∂E

∂wζκ
=

∂E

∂hκ

∂hκ

∂wζκ
, (4.34)

where hκ =
∑M

j=0 wjκaζ is the input to output-layer neuron κ; that is, the sum of the
activations of the hidden-layer neurons multiplied by the relevant (second-layer) weights.
So what does Equation (4.34) say? It tells us that if we want to know how the error at
the output changes as we vary the second-layer weights, we can think about how the error
changes as we vary the input to the output neurons, and also about how those input values
change as we vary the weights.

Let’s think about the second term first (in the third line we use the fact that ∂wjκ

∂wζκ
= 0

for all values of j except j = ζ, when it is 1):

∂hκ

∂wζκ
=

∂
∑M

j=0 wjκaj

∂wζκ
(4.35)

=
M∑

j=0

∂wjκaj

∂wζκ
(4.36)

= aζ . (4.37)

Now we can worry about the ∂E
∂hκ

term. This term is important enough to get its own
term, which is the error or delta term:

δo(κ) =
∂E

∂hκ
. (4.38)

Let’s start off by trying to compute this error for the output. We can’t actually compute



The Multi-layer Perceptron � 105

it directly, since we don’t know much about the inputs to a neuron, we just know about its
output. That’s fine, because we can use the chain rule again:

δo(κ) =
∂E

∂hκ
=

∂E

∂yκ

∂yκ

∂hκ
. (4.39)

Now the output of output layer neuron κ is

yκ = g(houtput
κ ) = g

⎛
⎝ M∑

j=0
wjκahidden

j

⎞
⎠ , (4.40)

where g(·) is the activation function. There are different possible choices for g(·) includ-
ing the sigmoid function given in Equation (4.27), so for now I’m going to leave it as a
function. I’ve also started labelling whether h refers to an output or hidden layer neuron,
just to avoid any possible confusion. We don’t need to worry about this for the activations,
because we use y for the activations of output neurons and a for hidden neurons. In Equa-
tion (4.43) I’ve substituted in the expression for the error at the output, which we computed
in Equation (4.21):

δo(κ) =
∂E

∂g
(

h
output
κ

) ∂g
(

h
output
κ

)
∂h

output
κ

(4.41)

=
∂E

∂g
(

h
output
κ

)g′
(

houtput
κ

)
(4.42)

=
∂

∂g
(

h
output
κ

)
[
1
2

N∑
k=1

(
g(houtput

k ) − tk

)2
]

g′
(

houtput
κ

)
(4.43)

=
(

g(houtput
κ ) − tκ

)
g′(houtput

κ ) (4.44)

= (yκ − tκ)g′(houtput
κ ), (4.45)

where g′(hκ) denotes the derivative of g with respect to hκ. This will change depending
upon which activation function we use for the output neurons, so for now we will write the
update equation for the output layer weights in a slightly general form and pick it up again
at the end of the section:

wζκ ← wζκ − η
∂E

∂wζκ

= wζκ − ηδo(κ)aζ . (4.46)

where we are using the minus sign because we want to go downhill to minimise the error.
We don’t actually need to do too much more work to get to the first layer weights, vι,

which connects input ι to hidden node ζ. We need the chain rule (Equation (4.34)) one
more time to get to these weights, remembering that we are working backwards through the
network so that k runs over the output nodes. The way to think about this is that each
hidden node contributes to the activation of all of the output nodes, and so we need to
consider all of these contributions (with the relevant weights).



106 � Machine Learning: An Algorithmic Perspective

δh(ζ) =
N∑

k=1

∂E

∂h
output
k

∂h
output
k

∂hhidden
ζ

(4.47)

=
N∑

k=1
δo(k)

∂h
output
k

∂hhidden
ζ

, (4.48)

where we obtain the second line by using Equation (4.38). We now need a nicer expression
for that derivative. The important thing that we need to remember is that inputs to the
output layer neurons come from the activations of the hidden layer neurons multiplied by
the second layer weights:

houtput
κ =

M∑
j=0

wjκg
(

hhidden
j

)
, (4.49)

which means that:

∂h
output
κ

∂hhidden
ζ

=
∂g

(∑M
j=0 wjκhhidden

j

)
∂hhidden

j

. (4.50)

We can now use a fact that we’ve used before, which is that ∂hζ

∂hj
= 0 unless j = ζ, when

it is 1. So:

∂h
output
κ

∂hhidden
ζ

= wζκg′(aζ). (4.51)

The hidden nodes always have sigmoidal activation functions, so that we can use the
derivative that we computed in Equation (4.33) to get that g′(aζ) = βaζ(1 − aζ),
which allows us to compute:

δh(ζ) = βaζ(1 − aζ)
N∑

k=1
δo(k)wζ . (4.52)

This means that the update rule for vι is:

vι ← vι − η
∂E

∂vι

= vι − ηaζ(1 − aζ)

(
N∑

k=1
δo(k)wζ

)
xι. (4.53)

Note that we can do exactly the same computations if the network has extra hidden
layers between the inputs and the outputs. It gets harder to keep track of which functions
we should be differentiating, but there are no new tricks needed.



The Multi-layer Perceptron � 107

4.6.5 The Output Activation Functions
The sigmoidal activation function that we have created is aimed at making the nodes act
a bit like neurons, either firing or not firing. This is very important in the hidden layer,
but earlier in the chapter we have observed two cases where it is not suitable for the
output neurons. One was regression, where we want the output to be continuous, and one
was multi-class classification, where we want only one of the output neurons to fire. We
identified possible activation functions for these cases, and here we will derive the delta
term δo for them. As a reminder, the three functions are:

Linear yκ = g(hκ) = hκ

Sigmoidal yκ = g(hκ) = 1/(1 + exp(−βhκ)

Soft-max yκ = g(hκ) = exp(hκ)/
∑N

k=1 exp(hk)

For each of these we need the derivative with respect to each of the output weights so
that we can use Equation (4.45).

This is easy for the first two cases, and tells us that for linear outputs δo(κ) = (yκ −
t(κ))yκ, while for sigmoidal outputs it is δo(κ) = β(yκ − t(κ))yκ(1 − yκ).

However, we have to do some more work for the soft-max case, since we haven’t differ-
entiated it yet. If we write it as:

∂

∂hK
yκ =

∂

∂hK

⎛
⎝exp(hκ)

(
N∑

k=1
exp(hk)

)−1⎞
⎠ (4.54)

then the problem becomes clear: we have a product of two things to differentiate, and three
different indices to worry about. Further, the k index runs over all the output nodes, and
so includes K and κ within it. There are two cases: either K = κ, or it does not. If they
are the same, then we can write that ∂ exp(hκ)

∂hkappa
= exp(hκ) to get (where the last term in the

first line comes from the use of the chain rule):

∂

∂hκ

⎛
⎝exp(hκ)

(
N∑

k=1
exp(hk)

)−1⎞
⎠

= exp(hκ)

(
N∑

k=1
exp(hk)

)−1

− exp(hκ)

(
N∑

k=1
exp(hk)

)−2

exp(hκ)

= yκ(1 − yκ). (4.55)

For the case where K �= κ things are a little easier, and we get:

∂

∂hK
exp(hκ)

(
N∑

k=1
exp(hk)

)−1

= − exp(hκ) exp(hK)

(
N∑

k=1
exp(hk)

)−2

= −yκyK . (4.56)

Using the Kronecker delta function δij , which is 1 if i = j and 0 otherwise, we can write
the two cases in one equation to get the delta term:



108 � Machine Learning: An Algorithmic Perspective

δo(κ) = (yκ − tκ)yκ(δκK − yK). (4.57)

The very last thing to think about is whether or not the sum-of-squares error function
is always the best one to use.

4.6.6 An Alternative Error Function
We have been using the sum-of-squares error function throughout this chapter. It is easy to
compute and works well in general; we will see another benefit of it in Section 9.2. However,
for classification tasks we are assuming that the outputs represent different, independent
classes, and this means that we can think of the activations of the nodes as giving us a
probability that each class is the correct one.

In this probabilistic interpretation of the outputs, we can ask how likely we are to see
each target given the set of weights that we are using. This is known as the likelihood and
the aim is to maximise it, so that we predict the targets as well as possible. If we have a 1
output node, taking values 0 or 1, then the likelihood is:

p(t|w) = ytk

k (1 − yk)1−tk . (4.58)

In order to turn this into a minimisation function we put a minus sign in front, and it
will turn out to be useful to take the logarithm of it as well, which produces the cross-entropy
error function, which is (for N output nodes):

Ece = −
N∑

k=1
tk ln(yk), (4.59)

where ln is the natural logarithm. This error function has the nice property that when
we use the soft-max function the derivatives are very easy because the exponential and
logarithm are inverse functions, and so the delta term is simply δo(κ) = yκ − tκ.

FURTHER READING
The original papers describing the back-propagation algorithm are listed here, along with
a well-known introduction to neural networks:

• D.E. Rumelhart, G.E. Hinton, and R.J. Williams. Learning internal representations
by back-propagating errors. Nature, 323(99):533–536, 1986a.

• D.E. Rumelhart, J.L. McClelland, and the PDP Research Group, editors. Parallel
Distributed Processing. MIT Press, Cambridge, MA, 1986b.

• R. Lippmann. An introduction to computing with neural nets. IEEE ASSP Magazine,
pages 4–22, 1987.

For more on the Universal Approximation Theorem, which shows that one hidden layer
is sufficient, some references (which are not for the mathematically faint-hearted) are:

• G. Cybenko. Approximations by superpositions of sigmoidal functions. Mathematics
of Control, Signals, and Systems, 2(4):303–314, 1989.

• Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
Networks, 4(2):251–257, 1991.


