
Programming assignment 4.
Best mismatch. INET sockets.

There is no place like 127.0.0.1!

In this assignment, you will implement a network version of the categorizer program that you
wrote for Assignment 2, but with a slight twist. You will develop an online dating service called
“Best Mismatch”. Assuming that opposites attract, our program will accept user preferences as
before, but will find a group of users that have exactly opposite interests. It will then
recommend these users as potential best mismatches for dating or friendship. It will print the
list of best mismatches and will allow the current user to send messages to any user from this
group.

You will write a socket server which implements this functionality. Clients can connect to your
server from any machine, and get the recommendations. For a client program, we use netcat.
You do not need to implement a socket client for this assignment.

Below you will find a step-by-step description of the product and the code examples with
explanations. The lecture about sockets is scheduled for November 29, and these (probably too
detailed) explanations should help you to get started with the assignment.

1. Reusing code from Assignment 2

The first step is to review a categorizer prototype you have written for Assignment 2. If your
code does not work properly, as indicated by your mark for Assignment 2, it is a good time to
come to office hours or to the lab and fix everything with your instructor or TAs. Do not start
writing a socket version before you make sure that your local code works as expected.

You have already implemented the functionality of producing a list of users based on a given
path in the question tree. It is not difficult to extend this functionality to the case when given a
list of answers you move to the leaf in the direction exactly opposite to the answers and reach
the bucket with the users who have exactly opposite interests. Add this functionality and test
that it works.

Another useful feature is to be able to get a list of answers for a given user name. For this, you
may want to modify your depth-first search to maintain a current path that lead to a given leaf.
In case that you found a user with a given name in one of the leaves, you will now have the list
of their original answers which you can pass to the function above and get the best mismatches
for the current user.

2. Socket server protocol
Users and clients
In you program, you need to collect all users with their answers into a question tree.

In addition, you need to maintain a list of currently connected clients. When user logs in, you
create a new node and add it to the list of clients. When user disconnects, you remove its node
from the client list.

It might be useful to allocate an array of answers and store it alongside each connected client,
because clients may request the list of recommendations at any point, and in this way you
would avoid traversing the question tree with each new request.

IMMP - protocol for mismatch server
Client login
You should be able to connect to your server by typing the following shell command:
netcat -C wolf.teach.cs.toronto.edu 12345,
where 12345 will be your port number.

Once you, the user, are connected, you will be asked for the user name. You type the name and
hit enter. You may use the same rules for the user name as in Assignment 2, but we will not test
for a valid user name while marking this assignment. The only requirement is that the user
name does not exceed 128 characters, and if it does, it is truncated by the server. The user
name is case-sensitive, as before.

If you provide a new user name (never before seen by the server) at the time you connect, the
server will create a new user, but if a user by this name already exists in the question tree, it
will assume that you are this user. No users are ever deleted from the question tree.

To terminate the current session, client either types quit, or terminates the netcat by sending
an interrupt signal Ctrl+C.

When the server is ready to accept commands, it reacts to the commands listed in the table
below. Any other command issued by a client should result in a “command not supported”
error message returned to the client.

List of poll commands

Command Description

do_test
Signifies that the current user is ready to answer questions about their
preferences. Server reacts by asking each question from the provided
questions file.

yes/no

Answers to the questions of the current test. The rules are as in
Assignment 2: any of YXX and NXX commands are accepted, and the
yes/no answers are case-insensitive. Server collects the answers and
assigns the user to the corresponding leaf list. In addition, it might
choose to record user answers in a separate array, in order to use its
reverse for the next command.

get_all

At any point, the user may request the list of best mismatches to be
returned. This list will only be produced if the user has already taken a
test of preferences. If the user did not take the test yet, the appropriate
error message is returned.

post
<target_name>
<message>

Delivers <message> from the current client to the user whose name is
specified as <target_name>. The message can contain several words, but
has a restriction on the total length: at most 1024 characters.

quit Disconnects the client and removes him from the list of active clients.

3. Implementing a single-client server
3.1. Establishing communication
Set up your socket interface, bind it to the known port, and implement message passing
between the server and a single client connected with netcat. You may start from implementing
a simple echo server that echoes each message back to the client. There are plenty of echo
server implementations, see for example here.

The entire program should be compiled using make. You will create a Makefile that produces an
executable called mismatch_server.
It must use the following GCC flags: -std=c99, -Wall, and -Werror.

You should be able to start your server by typing the following command:
./mismatch_server <questions_file_name>

http://www.cs.cmu.edu/afs/cs/academic/class/15213-f99/www/class26/tcpserver.c

In addition to building your code, your Makefile must permit choosing a port at compile-time.
In total, there should be three ways of defining the port.
First, add a #define preprocessing directive to your program to define the port number on
which the server will expect connections (this is the port <x> based on your student number, as
described in lab 11):

#ifndef PORT

 #define PORT <x>

#endif

Secondly, in your Makefile, include the following code, where <y> should be set to your
student number port plus 1:

PORT=<y>

CFLAGS+= -DPORT=\$(PORT)

Now, if you type make PORT=53456, the program will be compiled with PORT defined
as 53456. If you type just make, PORT will be set to y as defined in the Makefile. Finally, if you
use gcc directly and do not supply a port number, it will still have the x value from your source
code file. This method of setting a port value will make it possible for us to test multiple
submissions by compiling with our desired port numbers. (It is also useful for you to know how
to use -D to define macros at command line.)

You should also make sure to add the following lines to your server code so that the port will be
released as soon as your server process terminates.
int on = 1;

int status = setsockopt([sock_fd], SOL_SOCKET, SO_REUSEADDR,

 (const char *) &on, sizeof(on));

if(status == -1) {

 perror("setsockopt -- REUSEADDR");

}

Once you familiarize yourself with the steps needed to configure a socket server, you may start
implementing the required functionality, gradually adding each new feature after you have
tested the previous one.

3.2. Client connects
When a new client connects, add them to the list of active clients, store their personal file
descriptor returned by accept, and then ask for and store their name. You can use a predefined
string buffer of at most 128 characters (including the terminator ‘\0’) for the user name, and
you can truncate it if the user enters longer name, but you need to notify the user about it.

http://www.cdf.toronto.edu/~csc209h/winter/posted_labs/w11/lab11.shtml

You will need to maintain an independent linked list - to store all active clients, currently
connected to the server.

The suggested structure of each Client node is presented below.

typedef struct client {

 int fd; //file descriptor to write into and to read from

 int *answers;

//before user entered a name, he cannot issue commands

int state;

 char name [MAX_NAME];

 char buf [BUFFER_SIZE]; // each client has its own buffer

 int inbuf; // and a pointer to the current end-of-buf position

struct client *next;

} Client;

Note that the server keeps all its data about clients and users in memory. Once the server is
killed, all user information is gone.

Sample code for new connection may look like this:

int fd;

struct sockaddr_in r;

socklen_t socklen = sizeof(r);

if ((fd = accept(listenfd, (struct sockaddr *)&r, &socklen)) < 0) {

perror("accept");

 return;

}

add_client (fd, r.sin_addr); //call insert into linked list

3.3. Reading client commands into a dedicated buffer
Once the connection is established and a new file descriptor for each client is added, we can
use regular read and write, as with all file descriptors, to exchange messages between the
server and the client.

Useful note 1. Network new line convention

In the case of transmitting text, the ASCII standard gives us standard byte values for just about
everything except newlines. There is an accepted convention that the network newline is CRLF.

That is, a newline is represented by the two bytes (in order) which we could call CR and LF, or
control-M and control-J, or 13 and 10, or \015 and \012, or \r\n.

Thus, if the user sends two commands separated by a new line, we need to be able to extract
each line and process it separately. The following function suggests the simplest way to find the
position of a new line in a network message:

int find_network_newline (char *buf, int inbuf) {

 int i;

 for (i = 0; i < inbuf - 1; i++)

 if ((buf[i] == '\r') && (buf[i + 1] == '\n'))

 return i;

 return -1;

}

Useful note 2. Partial reads problem

A single message may arrive in packets, so we should be able to read and parse everything until
the new line, and then keep the remaining data in buffer until the end of the message arrives
later.

This can be implemented in the following way:

char *after = buf + inbuf;

int room = BUFFER_SIZE - inbuf;

int nbytes;

//read next message into remaining room in buffer

if ((nbytes = read(fd, after, room)) > 0) {

inbuf += nbytes;

int where = find_network_newline (buf, inbuf); //find new line

if (where >= 0) {

buf[where] = '\0'; buf[where+1] = '\0';

do_command (buf); //process buffer up to a new line

where+=2; // skip over \r\n

inbuf -= where;

memmove (buf, buf + where, inbuf);

 }

}

3.4. Parsing client commands
Now, when you have the properly extracted message from the client, you need to parse it to
handle client request. To parse the message, you may use the strtok function. An example is
presented below:

/*

** This program extracts tokens from a string using all characters

specified in a delimiter.

*/

#include <stdio.h>

#include <string.h>

int main () {

 char str[] ="This, a sample string! \n'";

 char * pch;

char delimiter[] = " \n";

 printf ("Splitting string \"%s\" into tokens:\n", str);

 pch = strtok (str,delimiter);

 while (pch != NULL) {

 printf ("%s\n", pch);

 pch = strtok (NULL,delimiter);

 }

 return 0;

}

When you have extracted the command and its arguments, you handle each command, check
for a correct message format, and write the corresponding message to the client, using the
same file descriptor. The netcat client takes care of all the problems described above, so you
may use regular write command.

When implementing the post <target> <message> functionality, you need to locate the target
user in the list of active clients first. If not found, you need to return the message “Your post
cannot be delivered. User <user_name> is not online”. Otherwise, you post the original
message by writing it to the file descriptor of a target client.

3.5. Disconnecting
When the user types quit, the server should remove him from the list of active clients and
probably send back some sort of goodbye message. The server will also remove the clients who
terminated the session without typing quit, by periodically checking closed file descriptors.

3.6. Constraints on the client-server interaction
If the client issues an unsupported request or provides invalid parameters, he should be
notified about the error. The client cannot issue the get_all command before he issued
the do_test command and finished the test. You may need to store a status of each client in the
current session in the field status (see sample definition of Client). All client commands should
be handled in your code and appropriate data or error notifications should be sent back to the
client.

4. Support for multiple clients
When several clients are connected and issue commands, you'll need to ensure that the server
is not blocked waiting for the response from one of the clients.
The server must never block waiting for input from a particular client or the listening socket.
After all, it can't know which client will talk next or whether a new client will connect. This
means that you must use select rather than blocking on one file descriptor.

An example of using select is shown below:

if (select(maxfd + 1, &fdlist, NULL, NULL, NULL) < 0) {

perror("select");

} else {

 for (p = top; p; p = p->next)

if (FD_ISSET(p->fd, &fdlist))

 break;

 if (p) //client message received

 handle(p);

 if (FD_ISSET(listenfd, &fdlist)) //new connection

 newconnection(listenfd);

}

5. Testing
Since you're not writing a client program, the netcat tool mentioned above can be used to
connect clients to your server and to test your program.
To use it, type netcat -C hostname yyyyy, where hostname is the full name of the machine on
which your server is running, and yyyyy is the port on which your server is listening. If you
aren't sure which machine your server is running on you can run hostname -f to find out. If you
are sure that the server and client are both on the same machine, you can use localhost in place
of the fully specified host name.

Test your final product with the following basic use cases. Each use case is accompanied by a

screenshot of a running demo. Try to keep your output formats close to the ones presented in

these screenshots, to avoid problems with automated testing.

Case 1: We can start the server by typing:

Server starts and prints the port it is listening at.

Case 2: The first client connects (in a separate window) with netcat:

Case 3. Performing the test and asking for recommendations:

Case 4. The second client can connect (in a separate window) while the first one is still connected.

Case 5. Posting message from VeryNegative to VeryPositive:

Message delivered:

Case 6. Clients disconnect with either quit command, or with an interrupt signal.

Server handles client disconnect:

6. Sample Code
Here is a sample server written by Alan Rosenthal that you might find helpful. Feel free to yank
code from there, with two important warnings:
● Don't copy-and-paste stuff into your program and then fuss with it to make it work. You

should know exactly what the code does and why. We won't take kindly to extra stuff in

your code that is unnecessary or does not work, and is clearly left over from the sample

server.

● Clearly indicate the code that you copied from the sample server.

7. Coding style
Coding style and code readability are very important. Use good variable names, appropriate
functions, descriptive comments, and blank lines. Remember that someone needs to read your
code. You may write extra helper functions. You MUST perform error-checking for all system
calls (and functions which use system calls). We recommend defining a set of helper functions
to wrap these calls to reduce duplication.

http://www.dgp.toronto.edu/~ajr/209/a4/muffinman.c

8. What to submit
Commit all the files required to build your executable. That includes *.h files, *.c files, and your
Makefile. Make sure your code compiles on CDF with the required flags before your final
submission. Also, make sure to check your repo URL on MarkUs before your final submit.
Remember to check that your program compiles without warnings when you type make and
that it produces an executable called mismatch_server. Make sure that you've done svn
add on every file. If you fail to commit some files and your code does not compile, your work
will not be graded!

As a final step, checkout your repository into a new directory to verify that everything is there.

9. Marking scheme
● Server setup [10%]: The code compiles without warnings. Servers starts and releases the

port after shutdown. The client can connect and issue commands according to the IMMP

protocol.

● One client at a time [40%]: One client at a time can connect and issue all the commands.

The server returns a correct list of mismatches. The server issues relevant error messages.

● Multiple clients connected and served at the same time [30%]: Support for multiple clients

using select.

● Coding style and error checking [10%]: All system calls need to have error checking. The best

way to do it without cluttering your code is to write your own helper functions for each

system call which check for errors, and use these custom functions instead of the original

ones.

● Proper port setting [10%]: We should be able to run your program with the port number set

from the command-line during the compilation.

For a total of 12% of the course grade.

Happy final coding!

