Pointers and addresses— what
happens after fork()

*p = 14,

if (1fork()) {
printf("CHILD: before changing the variable:\n");
printf("address of p is %p and value is %d\n", (void*)&p, *p);
*p =25;
printf("CHILD: after changing the variable:\n");
printf("address of p is %p and value is %d\n", (void*)&p, *p);
printf(" CHILD: exiting\n");
exit(0);

} else {
printf("PARENT: as is\n");
printf("address of p is %p and value is %d\n", (void*)&p, *p);
wait(NULL);
printf("PARENT: after child exited\n");
printf("address of p is %p and value is %d\n", (void*)&p, *p);

fork test.c

Explanation: virtual address
space

Virtual address space Physical address space
Each process stores mapping ovonoams |
from a virtual address to an 000010000 | !
actual physical memory address _ text | Or000000
[.
After fork() this virtual memory .
e OO0 ™
address is marked as read only ' ' [
data o
. . . !
So when child tries to change it,
a new piece of physical memory _) |
is allocated — cannot modify _ P A
read-only memory ! /
Now in child process virtual e
stack .)
address is the same, but points - - __ page belonging o provess
O TFFFFFFH I | page not belonging o process

to a different memory location

Staying in touch with your child

Since |
created you,
you never

write, never

ohone

Parent process Child process

We need inter-process communication

Inter-process communication

* Wait for exit status (report when done)

* Pipe (always open for communication)

* Signals (send when you want, handle or ignore)
* Sockets (open connection with the world)

Fork and wait

Lecture 04.02

treat as
an int

fork()
wait(int *status)
void exit(int status)

WIFEXITED(status)
WEXITSTATUS(status)

Is there something wrong
with this code?

// fork a child and then in the parent do
int status;
wait(status);

Is there something wrong
with this code?

// fork a child and then in the parent do
int “status;
wait(status);

Is there something wrong
with this code?

// fork a child and then in the parent do
int status;

wait(&status);

printf(“My child returned %d\n”,);

Doing it the right way

Int status;
wait(&status);

if {
printf(“My child returned %d\n”,
);
}

Example: fork wait.c

int child_status;
wait (&child_status);

if (WIFEXITED (child_status))
printf ("the child process exited normally,
with exit code %d\n", WEXITSTATUS (child_status));

else
printf ("the child process exited abnormally\n");

Exercise

* Write a program that forks one child for each
command line argument.

* The child computes the length of the command line
argument and exits with that integer as the return
value.

* The parent sums these return codes and reports
the total length of all the command line arguments.

Solution: 1/4
declare any variables you need

int i, result;

int total _len =0; //to store total _len_of args

Solution 2/4:
loop over command-line arguments

and fork

for(i=1;i<argc;i++) {

int result = fork();

Solution 3/4: inside for loop

if (result <0){ // case: a system call error
// handle the error exit(1);
} else if (result == 0) { // case: a child process
int len = strlen(argvli]);
exit (len); //status returned is the length
} else {
// in the parent but before doing the next loop iteration
// wait until a child terminates
int ret_status;
wait (&ret_status);

total_len += WEXITSTATUS(ret_status);

Solution 4/4: outside for loop

// Only the parent gets here

printf("The length of all the args is %d\n", total_len);

Inter-process communication

WV ¢ Wait for exit status (report when done)
* Pipe (always open for communication)
* Signals (send when you want, handle or ignore)
* Sockets (open connection with the world)

