
Pointers and addresses– what
happens after fork()
*p = 14;

if (!fork()) {

printf("CHILD: before changing the variable:\n");

printf("address of p is %p and value is %d\n", (void*)&p, *p);

*p = 25;

printf("CHILD: after changing the variable:\n");

printf("address of p is %p and value is %d\n", (void*)&p, *p);

printf(" CHILD: exiting\n");

exit(0);

} else {

printf("PARENT: as is\n");

printf("address of p is %p and value is %d\n", (void*)&p, *p);

wait(NULL);

printf("PARENT: after child exited\n");

printf("address of p is %p and value is %d\n", (void*)&p, *p);

}

fork_test.c

Explanation: virtual address
space

• Each process stores mapping

from a virtual address to an

actual physical memory address

• After fork() this virtual memory

address is marked as read only

• So when child tries to change it,

a new piece of physical memory

is allocated – cannot modify

read-only memory

• Now in child process virtual

address is the same, but points

to a different memory location

Staying in touch with your child

We need inter-process communication

Since I
created you,

you never
write, never

phone

whatever

Parent process Child process

Inter-process communication

• Wait for exit status (report when done)
• Pipe (always open for communication)
• Signals (send when you want, handle or ignore)
• Sockets (open connection with the world)

Fork and wait
Lecture 04.02

pid_t fork()
pid_t wait(int *status)

void exit(int status)

WIFEXITED(status)
WEXITSTATUS(status)

treat as
an int

Is there something wrong
with this code?

// fork a child and then in the parent do
int status;
wait(status);

// fork a child and then in the parent do
int *status;
wait(status);

Is there something wrong
with this code?

// fork a child and then in the parent do
int status;
wait(&status);

printf(“My child returned %d\n”, status);

Is there something wrong
with this code?

Doing it the right way

int status;
wait(&status);

if WIFEXITED(status) {
printf(“My child returned %d\n”,

WEXITSTATUS(status));
}

Example: fork_wait.c

int child_status;

wait (&child_status);

if (WIFEXITED (child_status))

printf ("the child process exited normally,

with exit code %d\n", WEXITSTATUS (child_status));

else

printf ("the child process exited abnormally\n");

Exercise

• Write a program that forks one child for each
command line argument.

• The child computes the length of the command line
argument and exits with that integer as the return
value.

• The parent sums these return codes and reports
the total length of all the command line arguments.

Solution: 1/4
declare any variables you need
int i, result;

int total_len =0; //to store total_len_of_args

Solution 2/4:
loop over command-line arguments
and fork

for (i = 1; i < argc; i++) {

int result = fork();

Solution 3/4: inside for loop
if (result < 0) { // case: a system call error

// handle the error exit(1);

} else if (result == 0) { // case: a child process

int len = strlen(argv[i]);

exit (len); //status returned is the length

} else {

// in the parent but before doing the next loop iteration

// wait until a child terminates

int ret_status;

wait (&ret_status);

total_len += WEXITSTATUS(ret_status);

}

Solution 4/4: outside for loop

// Only the parent gets here

printf("The length of all the args is %d\n", total_len);

Inter-process communication

• Wait for exit status (report when done)
• Pipe (always open for communication)
• Signals (send when you want, handle or ignore)
• Sockets (open connection with the world)

