
Signals
Lecture 04.04



The O/S controls your program 
with signals
• A signal is a short message – just an integer value – which 

can be sent to a process by O/S

• When a signal arrives, the process has to stop whatever it is 
doing and deal with a signal. Signals interrupt normal 
process execution

• The process looks into a mapping table of 32 signal numbers 
and finds there instructions of how to handle each signal



Some signals (0-31) and their default 
handling (defined in <signal.h>)

SIGINT 2 /* Interrupt from keyboard (happy termination): ctrl+C */

SIGQUIT 3 /*Quit from keyboard, dump memory (unhappy termination): ctrl-\ */ 

SIGKILL 9 /* hard kill. The only behavior is to kill the process, immediately. No 
cleanup, and thus this is a signal of last resort. */

SIGUSR1 10 /* left for programmers to do whatever they want*/

SIGUSR2 12 /* left for programmers to do whatever they want*/

SIGALRM 14 /* alarm clock – i.e. timer */

SIGTERM 15 /*kill the process, gracefully or not, but allow it a chance to cleanup*/

SIGCONT 18 /* continue a stopped process */ 

SIGSTOP 19 /* The only behavior is to pause the process; The shell uses pausing (and 
its counterpart, resuming via SIGCONT) to implement job control.*/ 

SIGCHLD 20 /* to parent on child stop or exit */

To know more: man 7 signal



Some signals (0-31) and their default 
handling (defined in <signal.h>)

SIGINT 2

SIGQUIT 3

SIGKILL 9

SIGUSR1 10

SIGUSR2 12

SIGALRM 14

SIGTERM 15

SIGCONT 18 

SIGSTOP 19 

SIGCHLD 20

These two signals 
cannot have a different 
behavior – they always 
kill or stop the process

The reaction to all other signals can 
be re-defined in your C program



Sending signal to a process from 
command-line
To see all running processes (belonging to user) and their pids:

ps (-u user)

kill pid (kill defaults to sending a SIGTERM)

kill -9 pid (hard kill, no escape) 

kill 19 pid

kill –SIGSTOP pid

kill –STOP pid

pkill –STOP pname



Redefining signal handler: SIGINT 

• The default signal handler for the interrupt signal just calls 
the exit() function

• The signal table lets you run your own code when your 
process receives a signal

• For example, if your process has files or network 
connections open, it might want to close things down and 
tidy up before exiting



Example: replace default behavior 
with sigaction
• For example, you want O/S to call a function called 

diediedie() if someone sends an interrupt signal to your 
process



Example 1/3: Define a new handler 
function of type void f (int)

void diediedie (int sig) {

puts ("Goodbye cruel world....\n");

exit(1);

}



Example 2/3: Set fields in a 
variable of type struct sigaction
struct sigaction action;

action.sa_handler = diediedie;

sigemptyset(&action.sa_mask);

action.sa_flags = 0;

Pointer to a function 
to call

The mask adds the signals to be 
ignored when the handler is 
running – empty mask does not 
ignore any other signals

Some additional flags



Example 3/3: sigactions are 
registered with sigaction()
sigaction (signal_no, &new_action, &old_action);

• signal_no - the integer value of the signal you want to 
handle. Usually, you’ll pass one of the standard signal 
constants, like SIGINT or SIGQUIT

• new_action - the address of the new sigaction you want to 
register (that we just created)

• old_action - if you pass a pointer to another sigaction, it will 
be filled with details of the current handler that you’re 
about to replace. If you don’t care about the existing signal 
handler, you can set this to NULL



Function for registering custom 
signals
int catch_signal(int sig, void (*handler)(int)) {

struct sigaction action;

action.sa_handler = handler;

sigemptyset(&action.sa_mask);

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

}

• This function will allow you to set a signal handler by calling 
catch_signal() with a signal number and a function name:

catch_signal (SIGINT, diediedie)



Summary: 
installing custom signal handler
1. Write a new function handler that returns void and has a 

single int as a parameter: 

void handler (int sig_num);

1. Declare and initialize a new variable of type struct 
sigaction

2. Register your new handler using function sigaction ()



Ignoring signals

• Ignoring

• Blocking



Ignoring signals: not even 
receiving a signal
struct sigaction action;

action.sa_handler = SIG_IGN;

sigaction (SIGINT, &action, NULL);



Blocking signals with sigaction

• Sometimes you want to block other signals from 
interrupting your handler function while it is handling the 
current signal

• That way you can have your signal handler modify some 
non-atomic state (say, a counter of how many signals have 
come in) in a safe way

• So sigaction takes a mask of signals it should block while the 
handler is executing



Blocking other signals while 
handler is running
struct sigaction action;  

action.sa_handler = &my_handler;  

sigemptyset(&action.sa_mask);  

sigaddset(&action.sa_mask, SIGINT);

sigaddset(&action.sa_mask, SIGTERM);

sigaction(SIGINT, &action, NULL);

• Here, we’re masking both SIGINT and SIGTERM: if either of 
these signals comes in while my_handler is running, they’ll 
be blocked until it completes.



Exercise 1: greeting



Infinite loop

#include <stdio.h>

#include <signal.h>

#include <unistd.h>

int main(int argc, char **argv) {        

for (;;) {  

}    

return 0;

}



Moving processes to the 
background and foreground
./greeting

ps

./greeting &

bg pid

kill –STOP pid
kill –CONT pid



Killing the process: 
many ways
kill –KILL pid #kill hard

kill –STOP pid

kill –TERM pid

kill -INT pid

kill pid #default - SIGTERM

pkill greeting



Signal handler: 
always void f (int)
void sing (int sig) {

puts ("Happy birthday to you,");

puts ("Happy birthday to you,");

puts ("Happy birthday to you,");

puts ("Happy birthday to you");

}

• How to make it to print a name?



Install new signal handler

int catch_signal(int sig, void (*handler)(int)) {

struct sigaction action;

action.sa_handler = handler;

sigemptyset(&action.sa_mask);

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

}

catch_signal (SIGUSR1, sing);



Test: compile and run 

ps

kill –USR1 pid



Making handler slower: 
sleep
char * name;

void sing (int sig) {

puts ("Happy birthday to you,");

puts ("Happy birthday to you,");

sleep (20);

printf ("Happy birthday, dear %s,\n", name);

puts ("Happy birthday to you");

}



Blocking SIGINT 
while singing
int catch_signal_nointerrupt(int sig, void (*handler)(int)) {

struct sigaction action;

action.sa_handler = handler;

sigemptyset(&action.sa_mask);

sigaddset(&sa.sa_mask, SIGINT);

action.sa_flags = 0;

return sigaction (sig, &action, NULL);

}

catch_signal_nointerrupt (SIGUSR1, sing);



Blocking signals in critical sections 
of code
• You might have a critical section where you don’t want to be 

interrupted, but afterwards you want to know what came in 

• You can block and unblock signals at any time using 
sigprocmask



Blocking/unblocking signals in 
code
catch_signal (SIGUSR1, sing);

sigset_t sigset;  

sigemptyset(&sigset);  

sigaddset(&sigset, SIGINT);

printf("Blocking signals...\n");  

sigprocmask (SIG_BLOCK, &sigset, NULL);

// Critical section

sleep(5);

printf("Unblocking signals...\n");

sigprocmask (SIG_UNBLOCK, &sigset, NULL);

new sig_set

Set signals we want to 
intercept



We can block all the signals at once 
(except SIGKILL and SIGSTOP)

int main() {    

sigset_t block_set;    

sigfillset(&block_set);    //fills in all possible signals

sigprocmask(SIG_BLOCK, &block_set, NULL);        

while (1);

}



Adding to Exercise 1

• Let’s add to our program greeting to demonstrate using 
sigprocmask

• Let’s say that our program is busy studying for 30 seconds, 
and during this time it cannot sing

• After 30 seconds it takes a break and can sing for about 20 
seconds.

Code in greeting_extended.c



Example: blocking/unblocking

for (;;) {        

puts("Busy studying! Go away.");       

// Don't be interrupted by SIGUSR1.        

sigset_t block_set;        

sigemptyset(&block_set);

sigaddset(&block_set, SIGUSR1);

sigprocmask (SIG_BLOCK, &block_set, NULL); 

sleep(30);                

printf("Okay I can party now.\n");   

sigprocmask (SIG_UNBLOCK, &block_set, NULL); 

sleep(20);    

}



Using raise() to raise signals inside 
the same process
• Sometimes you might want a process to send a signal to 

itself, which you can do with the raise() command:

raise(SIGUSR1);

• Normally, the raise() command is used inside your own 
custom signal handlers. It means your code can receive a 
signal for something minor and then choose to raise a more 
serious signal

• This is called signal escalation

• Another way to send signal to the same process:

kill (getpid(), SIGUSR1);



Using signals for communication 
between parent and child
if ((pid = fork()) == 0)     { /* child */

catch_signal (SIGUSR1, sing);  //install signal handler 

for(;;);  // loop for ever 

}

else { /* parent */

kill (pid,SIGUSR1); // pid holds id of child 

sleep(3); 

}



Exercise 2: 
signals and fork


