
Sockets
Lecture 04.05

Inter-process communication

• Wait for exit status (report when done)
• Pipe (always open for communication)
• Signals (send when you want, handle or ignore)
• Sockets (open connection with the world)

Need for a general way of inter-
process communication
• We have seen IPC through:

• files

• pipes

• wait

• signals

• These are limited:

• Pipes require a common ancestor process to set up the
pipe

• Signals are just a "poke" rather than a full data stream

General IPC through sockets

• We want two unrelated processes to talk with each other:

• Created by different shells

• Created by different users

• Running on different machines

• Sockets are communication points on the same or different
computers to exchange data

• Sockets are supported by Unix, Windows, Mac, and many
other operating systems

• Now they are also supported by all modern browsers

Sockets use file descriptors to talk

• Every I/O action is done by writing or reading to/from a
stream using file descriptor: an integer associated with an
open stream – this can be a network connection, a text file,
a terminal, or anything else

• To a programmer, a socket looks and behaves much like a
low-level file descriptor: has read(), write(), close()

• Sockets are full-duplex (2 way) – as if opening a stream for
both reading and writing

• The only difference – how we setup the socket

If 2 processes are unrelated – we
need a protocol for communication

• To make 2 machines to understand each other we need a set of rules
called a protocol

• There are several levels of protocols:

• TCP protocol – how to transfer and receive byte streams

• IP protocol – how to locate and connect to a machine on the
internet

• There are other protocols:

• For example, HTTP protocol establishes rules of communication
between browser and web server

• Many application-level protocols like FTP, SMTP, and POP3 make use
of sockets to establish connection between client and server and
then for exchanging data

Protocol types

• There are four types of socket protocols

• The first two are most common:

• TCP (Transmission Control Protocol)

• UDP (User Datagram Protocol)

Socket types are based on
underlying protocols
• Stream sockets – TCP

• Datagram sockets - UDP

Difference between stream and
datagram sockets
• Stream Sockets (TCP)

• Message delivery is guaranteed. If delivery is
impossible, the sender receives an error indicator

• If you send three items "A, B, C", they will arrive
in the same order − "A, B, C"

• Data records do not have any boundaries

• Datagram Sockets (UDP)

• Delivery is not guaranteed

• Connectionless: you don't need to have an open
connection as in Stream Sockets − you build a
packet with the destination information and send
it out

Client-server applications

• Sockets are used in a client-server framework

• A server is a process that performs some functions on
request from a client

• Creating socket on your machine is like installing a customer service
phone line

• If clients know the number to call, they can connect and communicate
with your service

For help – call 111.222.333.444 ext 555

Unix sockets
Data communications endpoints for exchanging data between
processes executing on the same host system

Unix domain socket
server
code in server.c

int serv_socket_fd;

if ((serv_socket_fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror (“socket”);

exit (1);

}

Define a socket prototype

socket() call does not specify where data will be
coming from, nor where it will be going to –it just
creates the interface!

Socket type –
Unix socket

Protocol type –
TCP

Protocol id –
can be more

than 1, but not
here

1
2 3

Assign address to socket (like a
phone number)
• You got a socket descriptor prototype from the call to

socket(), now you want to associate it with an address

• That address is a special file on disk – register a new name
with Unix file system

• Different processes can access these “files” as file system
inodes, so two processes can communicate by
reading/writing from/to the same file

Address for Unix domain sockets

struct sockaddr_un server_addr;

memset(&server_addr, '\0', sizeof (server_addr));

server_addr.sun_family = AF_UNIX;

strcpy(server_addr.sun_path, "/tmp/something");

unlink(server_addr.sun_path);

Declare variable of type
sockaddr_un

Clear all bytes
to zero

Setup address family

Setup file
name (creates
an inode)

Delete file with this
name if already exists

3 steps of socket server setup:
BLA
1. Bind

2. Listen

3. Accept

1. Bind

• Binding involves creating the connection resource, in this case the
socket inode (a new kind of "special file")

struct sockaddr_un serv_addr; //all set up

if (bind(serv_fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr)))
{

perror("bind");
return(1);

}

fd returned
from socket()

1

Address to bind
to and its size

2

Returns zero on success

Some sort of “polymorphism”

• Because there are many types of sockets and their addresses,
second argument of bind() is of a general type sockaddr, so we
can put there any address type, but we need to cast it to sockaddr

• Third parameter tells how much space to interpret for reading an
actual address from a given memory location

struct sockaddr_un serv_addr; //all set up

bind(serv_fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr)) ;

2. Listen

• Listen — wait for incoming connections

• Also specifies the length of the queue for connections which
have not yet been "accepted" - it is not a limit on the
number of people you are talking to - it's just how many can
do a connect() before you accept() them

if (listen(server_fd, 5)) {

perror("listen");

return(1);

}

Backlog for
incoming
connections

1
fd returned
from socket()

2

3. Accept

• Accept processes client requests (usually in a loop)

• It returns a new socket file descriptor for talking to that
particular client

struct sockaddr_un client _addr;

int len = sizeof (client_addr);

if ((client_fd = accept(fd, (struct sockaddr *)&client_addr,
&len)) < 0) {

perror("accept");
return(1);

}

1

fd returned
from socket()

2

Address of a client and the
length of this address

Client address is recorded into
variable client_addr
• When accept() returns, the client_addr variable will be filled with the

remote side's struct sockaddr_un, and len will be set to its length

• The new file descriptor client_fd is connected to the client, and is ready
for sending and receiving data

struct sockaddr_un client _addr;

int len = sizeof (client_addr);

if ((client_fd = accept(fd, (struct sockaddr *)&client_addr, &len)) < 0) {

perror("accept");

return(1);

}

Read data from a client: example

char buf[BUF_SIZE];

if ((len = read(client_fd, buf, BUF_SIZE-1))) < 0) {

perror("read");

return(1);

}

// The read is raw bytes. This turns it into a C string.

buf[len] = '\0';

printf("The other side said: %s\n", buf);

Write data to a client: example

//echo data back

if (write(client_fd, buf, strlen(buf)) != strlen(buf)) {

perror("write");

return(1);

}

Close

• Closing the client_fd makes the other side see that the
connection is dropped - server "hang up"

close(client_fd);

• Unix domain socket binding is reclaimed upon process exit,
but the inode is not. You have to explicitly unlink (delete) it

close(server_fd);

unlink("/tmp/something");

Unix domain socket
client
code in client.c

Client program: socket setup

• Create a socket interface of type Unix domain socket:

if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0) {

perror("socket");

return(1);

}

This is the only file descriptor
used by the client to connect to
a remote process

Connect to known address

• The client does connect(), the server does accept()

• Fill-in fields of server address:

struct sockaddr_un serv_addr;

memset(&serv_addr, '\0', sizeof (serv_addr));

serv_addr.sun_family = AF_UNIX;

strcpy (serv_addr.sun_path, "/tmp/something");

if (connect(fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr))) {

perror("connect");

return(1);

}

//at this point we have connected to the server socket successfully

Now client can write, as usual

if ((len = write(fd, "Hello", 5)) != 5) {

perror("write");

return(1);

}

Internet sockets
Code examples in server_inet.c and client_inet.c

Internet protocol: 2 layers –
TCP/IP
• TCP breaks data into packets and give each packet a

header:
• sequence number

• checksum

• IP – adds envelope with IP addresses

source address dest. address

bytes ack port

data

Preparing stream of data for
transmission

01100111001001
00100010001111
10100010111

101010001
111010101
100110010
110101111
001011011

101010001
111010101
100110010
110101111
001011011

101010001
111010101
100110010
110101111
001011011

101010001
111010101
100110010
110101111
001011011

IP

TCP

IP IP IP

To
24.197.0.67

To
24.197.0.67

To
24.197.0.67

To
24.197.0.67

TCP: make
packets

put in an
IP envelope
with another
header

Data stream

Challenges of Internet
sockets

New challenge:
Inter-operability
• Number representation

• If transmit as sequence of bytes – new line

• How to ensure proper network communication between
heterogeneous operating systems?

Byte order for multi-byte numbers

• Intel is little-endian, and Sparc is big-endian

• The standard network byte order is big-endian; a "little-
endian" machine must swap bytes in integers when copying
them to and from network transmission buffers.

Finding endianness of your
machine
Sample code in my_endian.c

Converting to network byte order

• To communicate between machines with unknown or
different “endian-ness” we convert numbers to network
byte order (big-endian) before we send them.

• There are functions provided to do this:
unsigned long htonl(unsigned long)

unsigned short htons(unsigned short)

unsigned long ntohl(unsigned long)

unsigned short ntohs(unsigned short)

Differences in data representation

• Different computer architectures use different conventions
to represent data formats (byte order, size of integer and
long, padding structures)

• To exchange data between heterogeneous systems over
network – need to put data into agreed-upon format
(marshalling protocols)

• A simpler approach: send data as text, as a sequence of
bytes

Newline in different O/S

• A text is a sequence of zero or more "lines". A line of a text file is a
sequence of zero or more non-newline characters followed by a
newline

• Different operating systems have different newline "conventions":

• The ASCII standard: use single byte number 10 ("control-J", or
"line feed" or "LF“)

• Unix: byte 10 as a "newline character", and we get it in C in
Unix by typing "\n“

• MS-DOS and successors: a two-byte sequence to separate
lines: byte 13 and byte 10 ("control-M" and "control-J“)
"Control-M" is also known as "carriage return" or "CR".
Together, this two byte sequence is called "CRLF“

• Some other operating systems have other newline conventions

Newline problem for sending data
over the network
• In the case of transmitting text, the ASCII standard gives us

standard byte values for just about everything except
newlines

• So we need to adopt a newline standard for network text
transmission

Network new line convention

• The network newline convention is CRLF. That is, a newline
is represented by the two bytes (in order) which we could
call CR and LF, or control-M and control-J, or 13 and 10, or
\015 and \012.

Network new line: \r\n rather than just \n

Internet sockets: the same BLA

• Internet socket setup follows the same sequence of actions:

• Socket

• Bind

• Listen

• Accept

Before starting reading and writing

• There are only 2 differences:

• Socket type is now AF_INET, not AF_UNIX

• The address needs more details: we are connecting from
a different machine

Socket()

• This is the same as before, except it says "INET" instead of
"UNIX"

if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

perror("socket");

return(1);

}

IP addresses

• The IP host address is used to uniquely identify machines
connected to the Internet

• It is a 32-bit quantity interpreted as 4 8-bit numbers or
octets

• An IP address is usually written in a dotted-decimal notation
of the form N1.N2.N3.N4, where each Ni is a decimal
number between 0 and 255 decimal

Host names are mapped to
unique string names
• Host names in terms of numbers are difficult to remember

and hence they are termed by ordinary names such as
google.com or yahoo.com

• We need to find out the dotted IP address corresponding to
a given name

• The process of finding out dotted IP address from host
name is known as hostname resolution

• A hostname resolution is done by special software residing
on Domain Name Servers (DNS): they keep the mapping of
IP addresses and the corresponding ordinary names

In C we can get the real host
address with getaddrinfo()

Sample code in showip.c

run with ./showip <str_name>

To find IP address of your machine
(on Linux):

/sbin/ifconfig

Identifying the process on a host
machine with port
• If the client knows the 32-bit Internet address of the host

machine, it can contact that host

• To identify the particular server process running on that host we
define a port number

• New port number should be an integer between 1024 and 65535:

• Port numbers smaller than 1024 are considered well-known
(telnet uses port 23, http uses 80, ftp uses 21 etc.)

• You can see port assignments in the file /etc/services

• In your own application you need to make sure that your port
is not assigned to any other service (Any port number more
than 5000 is a good choice)

Defining address and port for
INET server socket
struct sockaddr_in serv_addr;

memset(& serv_addr, '\0', sizeof (serv_addr));

serv_addr.sin_family = AF_INET;

serv_addr.sin_addr.s_addr = INADDR_ANY;

serv_addr.sin_port = htons(12345);

This means that if there
are more than one IP
address for this machine,
use any of them

Note the use of htons (host-to-
network-short) which converts a
given port number to a network
format

1. Bind

• For AF_INET sockets, there is no filesystem token representing
them - only a list of bound ports/IPs kept track of by the kernel

• Looks exactly the same as with Unix domain sockets

struct sockaddr_in serv_addr; //all set up

if (bind(serv_fd, (struct sockaddr *)&serv_addr, sizeof (serv_addr)))
{

perror("bind");
return(1);

} Returns zero on success

Here we are casting again to struct
sockaddr – so it can compile, but the
address structure itself is quite different

2. Listen

if (listen(server_fd, 5)) {

perror("listen");

return(1);

}

3. Accept

struct sockaddr_in client _addr;

int len = sizeof (client_addr);

if ((client_fd = accept(fd, (struct sockaddr *)&client_addr,

&len)) < 0) {

perror("accept");

return(1);

}

• If you terminate your server program, and then start it again, you may
receive the following error message when calling bind():

Can’t bind the port: address already in use.

• When you bind a socket to a port, the operating system will prevent
anything else from rebinding to it for the next 30 seconds or so, and that
includes the program that bound the port in the first place.

• To get around the problem, you just need to set an option on the socket
before you bind it

int reuse = 1;

if (setsockopt(server_fd, SOL_SOCKET, SO_REUSEADDR,

(char *)&reuse, sizeof(int)) == -1)

error("Can't set the 'reuse' option on the socket.");

Can't bind the port: Address already in use

Server ports are sticky

Summary: Connection-Oriented
(TCP) Stream sockets

Server

• Create a socket: socket()

• Assign an address to a socket: bind()

• Establish a queue for connections and start listening: listen()

• Get a connection from the queue: accept()

Client

• Create a socket: socket()

• Initiate a connection: connect()

Example: multi-client socket
server
Code example in server_inet_multi.c

• You can connect and test it with a general socket client
called netcat

• In its client mode, netcat will connect to the server specified
with name and port, and will send everything that you type
on the stdin (keybord)

netcat -C 128.100.31.200 12345

Send \r\n as
line ending

port

IP address
of a server

Message arrives as a sequence of
packets

• In TCP protocol, a single message arrives as a sequence of packets

• If we want to reconstruct the original message lines, we need to parse
one line of a message, and keep the beginning of the next line in buffer

• For this, we need keep one pointer for each buffer, to keep track of
data length

char buf [BUFFER_SIZE];

int inbuf;

Parsing partial reads into lines of
text: 1/3
char *after = buf + inbuf;

int room = BUFFER_SIZE - inbuf;

int nbytes;

if ((nbytes = read(fd, after, room)) > 0) {

inbuf += nbytes; //advance inbuf pointer

Read next piece of data (of size room)
from fd into a computed place in buffer

inbuf

room
inbuf

nbytes

Parsing partial reads into lines of
text: 2/3

if ((nbytes = read(fd, after, room)) > 0)

{

…

int where = find_network_newline (buf, inbuf);

if (where >= 0) {

buf[where] = '\0'; buf[where+1] = '\0';

do_command(buf);

}

Process data in buffer to find a new line

inbuf

If data contains new line –
make a C string and
process it

network new line

Parsing partial reads into lines of
text: 3/3

if ((nbytes = read(fd, after, room)) > 0)

{

…

if (where >= 0) {

…

where+=2; // skip over \r\n

inbuf -= where;

memmove (buf, buf + where, inbuf);

}

}

inbuf

Move remaining data to
the beginning of the
buffer for next read

where

inbuf - whereinbuf

Select()
Sample code in file server_select.c

Blocking

• A blocking call does not return to your program until the
event you requested has been completed

• Most of system calls in socket programming are blocking

Listening – non-blocking
int status = listen(sockid, queueLimit);

• status: 0 if listening, -1 if error

• Important: listen() is non-blocking: returns immediately.

• The listening socket (sockid) is never used for sending and
receiving – it is used by the server only as a prototype for
new sockets

Establish connection (in client) - blocking:
int status=connect(sockid, &foreignAddr,

addrlen);
• The client establishes a connection with the server by calling

connect()

• status: 0 if successful connect, -1 otherwise

• Important: connect() is blocking

Server - incoming connection - blocking:
int s= accept(sockid, &clientAddr,

&addrLen);
• The server gets a socket for an incoming client connection

by calling accept()

• Important: accept() is blocking: waits for connection before
returning

Exchanging data - blocking

int count = write (sockid, msg, msgLen);

int count = send(sockid, msg, msgLen, flags);

• msg: message to be transmitted

• msgLen: integer, length of message (in bytes) to transmit

• count: # bytes transmitted (-1 if error)

int count = read (sockid, recvBuf, bufLen);

int count = recv(sockid, recvBuf, bufLen, flags);

• Calls are blocking - return only after data is sent / received

Avoiding blocking in complex
programs
• For simple programs, blocking is convenient

• What about more complex programs?

• multiple connections

• simultaneous sends and receives

• simultaneously doing non-networking processing

Ways to handle multiple clients
without blocking
• Forking a child process for each client

• Processing each client in a separate thread (not covered)

• Using poll() (not covered)

• Using select()

Select()

• Problem: from which socket the server should accept
connections or receive messages?

• Solution: select()

• specifies a list of descriptors to check for pending I/O
operations

• blocks until one of the descriptors is ready (or timeout)

• returns which descriptors are ready

Preparing file descriptor sets

• Populate sets of socket descriptors you are interested in
using macros

• Once you have the set, you pass it into the function as one
of the following parameters:

• readfds if you want to know when any of the sockets in
the set is ready to read() data

• writefds if any of the sockets is ready to write() data to

• exceptfds if you need to know when an exception (error)
occurs on any of the sockets

• Any of these parameters can be NULL if you're not
interested in those types of events

Preparing fd sets: example

FD_SET(int fd, fd_set *set); Add fd to the set.

FD_CLR(int fd, fd_set *set); Remove fd from the set.

FD_ISSET(int fd, fd_set *set); Return true if fd is in the set.

FD_ZERO(fd_set *set); Clear all entries from the set.

fd_set readfds;

// pretend we've accepted two clients at this point: s1 and s2

FD_ZERO(&readfds);

FD_SET(s1, &readfds);

FD_SET(s2, &readfds)

Select parameters

int select (int n, fd_set *readfds, fd_set *writefds,

fd_set *exceptfds, struct timeval *timeout);

• The first parameter, n is the highest-numbered file
descriptor to check - plus one

• The last parameter timeout tell select() how long to check
these sets for

• Select returns after the timeout, or when an event occurs,
whichever is first

Parameters: example

• Suppose s2 > s1, so we use it for the n :

n = s2 + 1;

• Wait until either socket has data ready to be read (timeout
10.5 secs)

tv.tv_sec = 10; //seconds

tv.tv_usec = 500000; //microseconds (1,000,000 microseconds in a second)

rv = select(n, &readfds, NULL, NULL, &tv);

Select return value

• Returns the number of ready descriptors in the set on
success, 0 if the timeout was reached, or -1 on error

• After select() returns, the values in the sets will be changed
to show which are ready for reading or writing, and which
have exceptions

Return value: example

rv = select(n, &readfds, NULL, NULL, &tv);

if (rv == -1) {

perror("select"); // error occurred in select()

} else if (rv == 0) {

printf("Timeout occurred! No data after 10.5 seconds.\n");

} else {

// one or both of the descriptors have data

if (FD_ISSET(s1, &readfds))

read(s1, buf1, sizeof buf1);

if (FD_ISSET(s2, &readfds))

recv(s2, buf2, sizeof buf2);

}

