
Shell scripts (bash)
Lecture 1.2



Shell

• In addition to being an interpreter of user commands, shell 
also provides a high-level programming language

• The script may contain calls for any other tool

• It has variables, loops, conditionals etc.

• You can write sophisticated programs in "shell script"



Script may include call to any 
other tool
• Your sh program can use any Linux command, including any 

useful little utilities you write in C or any other programming 
language

• It's quite common for a complex package to include some C 
code and some shell scripts, and the shell scripts invoke the 
C programs 



Useful script: connecting to 
teach.cs
• We can store any shell 

command in a file and 
invoke it by running this 
file

• Let’s create a script which 
connects to teaching lab 
machines:

Now instead of typing the 
full path to the server, we 
just invoke ./cdf

cat << EOF > cdf
> #!/bin/bash
> ssh wolf.teach.cs.toronto.edu
> EOF

This will create file cdf
chmod 700 cdf
./cdf



Script with command-line 
arguments
• In file hello

#!/bin/bash

salutation="Hello, "

echo "The program $0 is now running "

for arg in $*

do

salutation="$salutation $arg"

done

echo "$salutation"



Interactive script

secretname=marina

name=noname

echo "Try to guess the secret name!"

echo

until [[ "$name" = "$secretname" ]]

do

read -p "Your guess: " name

done

echo "Very good."



Exit codes

• All shell programs are written in C

• By convention, if a C program succeeds, it exits with 
code 0, and it exists with a non-zero code in case of 
failure



If with exit codes

• Boolean values in sh are based on command exit status: 
"true" command in /bin is just exit 0; "false" is just exit 1. 

• Example: command "foo" succeeds or fails:

if foo

then

bar

else

echo sorry, foo failed

exit 1

fi



test

• A general testing utility exists for testing, called "test". See 
"man test".

if test 2 -lt 3 

then

echo "OK"

fi

• Equivalent to: 

if [[ 2 < 3 ]]



Numeric and string comparisons

• "test" tests numeric relations, performs string comparisons 
and file tests.

= is string-compare

-eq is numeric equality (lt, gt, le, ge)



Testing for files

test -f blah

• succeeds iff blah exists and is a regular file

test -s blah

• succeeds iff blah exists and is a regular file and is not zero-
sized

test -d blah

• succeeds iff blah exists and is a directory



expr
• Utility program which evaluates various expressions: see "man expr".

• For example, "expr 1 + 2" will output "3". 

• All of these parameters have to be different tokens, i.e. different 
elements of argv (separated by spaces)

Example: increment x by 1

#!/bin/bash

x=1; echo $x

count=`expr $count + 1`

echo $count

Equivalent to:

x=$(( x + 1 ))

Or

(( $x = $x + 1 ))

Arithmetic expansion

Arithmetic evaluation



Interpreting everything: example

• We need to suppress the interpretation of special characters.

• Example: How do we use the echo command to output an actual 
'>'? Suppose we want to print:

To forward your mail to user@host, type:  echo user@host >.forward

• We can't just use:

echo To forward your mail to user@host, type:  echo user@host >.forward

Why ?



Suppressing interpreter: 3 
methods
1.   backslashes

echo To forward your mail to user@host, type: echo user@host \>.forward

2.    single quotes 

echo 'To forward your mail to user@host, type: echo user@host >.forward'

echo To forward your mail to user@host, type: echo user@host '>'.forward

echo To forward your mail to user@host, type: ec'ho user@host >.f'orward

(although the spaces within single quotes are prevented from separating argv
members, which would matter for most commands other than echo)

3. double quotes



Suppressing interpreter: 3 
methods

address=user@host

a. echo To forward your mail to $address, type: echo $address >.forward

b. echo 'To forward your mail to $address, type: echo $address >.forward'

c. echo "To forward your mail to $address, type: echo $address >.forward"

Which version gives the 
desired output?



Piping and forking commands

(a;b;c) | sort

(echo This is foo.c; cat foo.c; echo This is bar.c; cat bar.c) | lpr



Globbing in shell scripts
• command-line: "globbing" done by the shell.

• '*' matches any number of any character.

*.c

*x*y 

• '?' matches any one character.

a?.pdf

• [list of chars]

a[1234].pdf 

• [range]

a[1-4].pdf

use [a-z] to match any lower-case letter

combine them: [a-xz] matches any lower-case letter except 'y' 



What will be printed? 

expr 2 * 3

$ mkdir +

$ expr 2 * 3

5

$ 

It depends upon what files 
are in the current directory, 
because '*' is substituted 
accordingly.



Printing all directories: example

for i in *

do

if [[ -d "$i" ]]

then

echo "$i"

fi

done



While loop

• "while" – same evaluation as for "if"

• Example: loop which counts 1 to 10:

i=0
while test $i -lt 10
do

i=$( expr $i + 1 )
echo $i

done

i=0
while [[ $i < 10 ]]
do

i=$(( i + 1 ))
echo $i

done



For loop

for i in hello goodbye

do

echo $i, world

done

for i in $(seq 9)

do

echo $( expr $i '*' $i )

done

What is printed here?



For loop with arithmetic 
evaluation 
for (( c=1; c<=5; c++ ))

do

echo "welcome $c times"

done


