
System calls.
Forking processes

Lecture 04.01

Outline

• Using system calls to run other programs from C
code

• System call exec which replaces current process

• Forking new processes. Process id

System calls

• If a C program wants to talk to the hardware, it makes a
system call

• System calls are functions that live inside the operating
system’s kernel

• Whenever you call printf() to display something on the
command line, somewhere at the back of things, a system
call will be made to the operating system to send the string
of text to the screen

What is the kernel?

• The kernel is the most important program on your
computer, the central part of an operating system

• Responsible for:

• Processes

• Memory

• Hardware

Process

• Process is a running program managed by the kernel:

• The kernel creates processes and makes sure they get
the resources they need.

• The kernel also watches for processes that become too
greedy or crash

• The operating system tracks each process with a number
called the process identifier (PID)

• The UNIX command ps will list all current processes running
on your machine and their pid

getpid() in <unistd.h>

pid_t getpid()

• gives process identifier of the program’s own process from
within the C code

• always successful and no return value is reserved to indicate
an error

main() {

printf("%ld\n", getpid());

}

defined in
<sys/types.h>

system() in <stdlib.h>

int system(char *string)

• string can be the name of a unix utility, an executable shell
script or a user program. System returns the exit status of
the shell

main() {

system ("clear");

printf("Files in Directory are:\n");

system("ls -l");

}

exec() in <unistd.h>

• Gives more control: you can specify arguments of the
program that you are running and environment variables

Exec functions memorizer

exec

l

v

p e

All exec
functions
begin with exec

List of
arguments

Array/vector of
arguments

Search in
PATH

set and Use
environment
variables

optional

There are many exec() functions

• Two groups of exec() functions:

• the list functions execl

• the vector (array) functions execv

Example of list execs

execl("/home/flynn/clu", "/home/flynn/clu", "paranoids",

"contract", NULL);

execle("/home/flynn/clu", "/home/flynn/clu", "paranoids",

"contract", NULL, env_vars);

execlp("clu", "clu", "paranoids", "contract", NULL);

Program to
run List of command-line arguments.

First – program name, last - NULL

Search for clu in all directories specified
in PATH

Example of vector execs

• If you already have your command-line arguments stored in
a string array my_args, you can use execs with arrays
(vectors)

• execv("/home/flynn/clu", my_args);

• execvp("clu", my_args);

Example of environment
variables
char *my_env[] = {"JUICE=peach and apple", NULL};

execle("diner_info", "diner_info", "4", NULL, my_env);

Call to exec() terminates current
program
• Replaces the current process: when you call exec() your

main program terminates immediately

• When the new program starts it will have exactly the same
PID as the old one.

• Relay race: your program hands over its process to the new
program.

Main programNew process

exec()

But what if there’s a problem?

• If there’s a problem calling the program, the existing
process will keep running

• That’s useful, because it means that if you can’t start that
second process, you’ll be able to recover from the error and
give the user more information on what went wrong

• The C Standard Library provides built-in code that
guarantees uniform treatment of all system errors

Guaranteed
standard of

failure

Example: exec failed, main
process continues
execle("diner_info", "diner_info", "4", NULL, my_env);

puts("Dude - the diner_info code must be busted");

If it prints this,
execle failed

We want to know exactly what
happened
• The errno variable is a global variable that’s defined in

errno.h

• puts(strerror(errno));

• perror("Error: ");

strerror() converts an error
number into a message

EPERM=1 Operation not permitted

ENOENT=2 No such file or directory

ESRCH=3 No such process

EMINEM=81 Bad haircut

perror() Combines error
description with a custom
message

Summary

• System calls are functions provided by the kernel of the OS

• When you make a system call, you are calling a function
outside your program

• system(): a system call to run a command string

• exec(): lets you run programs with more control, takes over
the current process

There are several versions of the exec() system call

Ask yourself

• If I call an exec() function, can I do anything afterward?

But what if you want to start another process and
keep your original process running?

fork() will clone your process

• fork() makes a complete copy of the current process

• The brand-new copy will be running the same program,
from the same line number

• It will initially have exactly the same variables that contain
exactly the same values

• The only difference is that the copy process will have a
different process identifier from the original

• The original process is called the parent process, and the
newly created copy is called the child process

getppid() in <unistd.h>

pid_t getppid()

• gives process identifier of the program’s parent process
from within the C code

• always successful and no return value is reserved to indicate
an error

main() {

printf("%ld\n", getppid());

}

The parent of the original process is shell

fork() returns -1

• If it returns -1, something went wrong, and no child was
created

• Use perror() or strerror() to see what happened

fork() returns 0

• You are the child process

• You can get the parent's PID by calling getppid()

• Of course, you can get your own PID by calling getpid()

fork() returns not 0 and not -1

• Any other value returned by fork() means that you're the
parent

• The value returned is the PID of your child

• This is the only way to get the PID of your child, since there
is no getcpid() call (obviously due to the one-to-many
relationship between parents and children)

Detecting which process is
running
When we spawn 2 processes we can easily detect (in each
process) whether it is the child or parent since fork returns 0
to the child.

int f;

f = fork();

if (f < 0) {puts(strerror(errno)); exit(1); }

if (f == 0)

{ /* Child process */ }

else

{ /* Parent process*/.... }

Detecting which process is
running
When we spawn 2 processes we can easily detect (in each
process) whether it is the child or parent since fork returns 0
to the child.

int f;

f = fork();

if (f < 0) {puts(strerror(errno)); exit(1); }

if (f == 0)

{ /* Child process */ }

else

{ /* Parent process: f is child's pid */.... }

Detecting which process is
running
When we spawn 2 processes we can easily detect (in each
process) whether it is the child or parent since fork returns 0
to the child.

int f;

f = fork();

if (f < 0) {puts(strerror(errno)); exit(1); }

if (f == 0)

{ /* Child process */ }

else

{ /* Parent process: f is child's pid */.... }

Staying in touch with your child

We need inter-process communication

Since I
created you,

you never
write, never

phone

whatever

Inter-process communication

• Wait for exit status (report when done)
• Pipe (always open for communication)
• Signals (send when you want, handle or ignore)
• Sockets (open connection with the world)

