
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Special algorithms for disks

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Algorithms for large
inputs:

Lecture 02.01

External-memory sorting

By Marina Barsky
Winter 2017, University of Toronto

Algorithms for external memory
• In most studies of algorithms, one assumes the “RAM model”:

• Data is in main memory,

• Access to any item of data takes as much time as any other.

• When implementing a DBMS, one must assume that the data does
NOT fit into main memory.

• Often, the best algorithms for processing very large amounts of
data differ from the best main-memory algorithms for the same
problem.

• There is a great advantage in choosing an algorithm that uses few
disk accesses, even if the algorithm is not very efficient when
viewed as a main-memory algorithm.

I/O model of computation
• Disk I/O = read or write of a block is very expensive compared

with what is likely to be done with the block once it arrives in
main memory.
Perhaps 1,000,000 machine instructions in the time to do one random disk I/O.

• The I/O model of computation measures the efficiency of an
algorithm by counting how many disk reads and writes it
needs.

• The unit of I/O is a block

• The model is oversimplified – no difference between
consecutive reading of several blocks and random access

Best sorting algorithm?

• Common main-memory sorting algorithms don't look so

good when you take disk I/O's into account.

• Variants of Merge Sort do better

http://www.sorting-algorithms.com/random-initial-order

In-memory merge sort

• Merge = take two sorted lists and repeatedly chose the smaller of

the “heads” of the lists (head = first of the unchosen).

• Example: merge 1,3,4,8 with 2,5,7,9 = 1,2,3,4,5,7,8,9.

• Merge Sort is based on recursive algorithm:

• divide records into two parts;

• recursively mergesort the parts, and

• merge the resulting lists.

Merge sort
algorithm mergesort (array A of size N)

if (N = 1) return A

A1: = A[0 … N /2)

A2: = A[N/2+1 … N)

A1: = mergesort (A1)

A2: = mergesort (A2)

return merge (A1, A2)

merge (array X, array Y)

result array Z

i = 0 j = 0

while (i < |X| and j < |Y|)

if (X[i] > Y[j])

append Y[j] to Z

j ++

else

append X[i] to Z

i ++

while (i < |X|)

append X[i] to Z

i ++

while (j < |Y|)

append Y[j] to Z

j ++

2-way merge sort is not good
enough for disk data!

• If input is N blocks -

• log2N passes - each
block is read/written
from disk log2N times
during merge

• If data is on disk –

O (N log N) disk I/Os

Two-Phase, Multiway Merge Sort

• The secondary-memory variant operates in a small number of
passes:

• in each pass every record is read into main memory once and
written out to disk once.

• 2PMMS: 2 reads + 2 writes per block.

2PMMS: Phase 1

1. Fill main memory with blocks

2. Sort using favorite main-memory sort

3. Write sorted sublist to disk

4. Repeat until all records have been put into one of
the sorted lists (runs)

2PMMS:
Phase 2

• Manage the buffers as needed:

• If an input block is exhausted, get
the next block from the same run.

• If the output block is full, write it to
disk.

2PMMS: Toy Example
• 24 records with keys:
12 10 25 20 40 30 27 29 14 18 45 23 70 65 35 11 49 47 22 21 46
34 29 39
• Suppose 1 block can hold 2 records.
• Suppose main memory (MM) can hold 4 blocks i.e. 8 records.

Phase 1.
• Load 12 10 25 20 40 30 27 29 in MM, sort them and write the

sorted sublist: 10 12 20 25 27 29 30 40
• Load 14 18 45 23 70 65 35 11 in MM, sort them and write the

sorted sublist: 11 14 18 23 35 45 65 70
• Load 49 47 22 21 46 34 29 39 in MM, sort them and write the

sorted sublist: 21 22 29 34 39 46 47 49

2PMMS example – Phase II

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list:

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list:

10 12

11 14

21 22

2PMMS example – Phase II

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list:

10 12

11 14

21 22

10

2PMMS example – Phase II

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list:

10 12

11 14

21 22

10 11

2PMMS example – Phase II

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list:

10 12

11 14

21 22

10 11

2PMMS example – Phase II

Output
Buffer full:

flush to
disk

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list: 10 11

10 12

11 14

21 22

2PMMS example – Phase II

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list: 10 11

10 12

11 14

21 22

12

2PMMS example – Phase II

Processed
Input Buffer1
– upload from

sub-list 1

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list: 10 11

20 25

11 14

21 22

12

2PMMS example – Phase II

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list: 10 11

20 25

11 14

21 22

12 14

2PMMS example – Phase II

Processed
Input Buffer2
– upload from

sub-list 2

Output
Buffer full:

flush to disk

Phase 2.

On disk:

Sub-list 1: 10 12 20 25 27 29 30 40

Sub-list 2: 11 14 18 23 35 45 65 70

Sub-list 3: 21 22 29 34 39 46 47 49

Main Memory (4 buffers)

Input Buffer1:

Input Buffer2:

Input Buffer3:

Output Buffer:

Sorted list: 10 11 12 14 …

20 25

18 23

21 22

2PMMS example – Phase II

We continue in this way

until the sorted sub-lists

are finished and we get

on disk the whole sorted

list of records.

