
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Special algorithms for disks

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

2PMMS: comparative
analysis

Lecture 02.02

By Marina Barsky
Winter 2017, University of Toronto

• 10,000,000 records of 200 bytes each = 2GB file
• Stored on disk, with 20K blocks, each holding 100 records

• Entire file occupies 100,000 blocks (200*107 / 20 *103)

• 100MB available main memory
• The number of blocks that can fit in 100MB of memory is

100 x 106 / (20 * 103), or 5,000 blocks.

Total in bytes

Merge sort: how long does it
take?

I/O time per block – avg 11.5 ms:
6 ms – average seek time
5 ms – average rotational delay
0.5 ms – transfer time for 20K block

1 block

Total RAM 1 block

Analysis – Phase 1

• 5000 out of the 100,000 blocks will fill main memory.
• We thus fill memory 100,000/5,000=20 times, sort the records in main

memory, and write 20 sorted runs out to disk.

• How long does this phase take?

• We read each of the 100,000 blocks once, and we write 100,000
new blocks. Thus, there are 200,000 disk I/O's for 200,000*11.5
ms = 2300 seconds, or 38 minutes.

I/O time per block – avg 11.5 ms:
6 ms – average seek time
5 ms – average rotational delay
0.5 ms – transfer time for 20K block

Analysis – Phase 2

• Every block holding records from one of the sorted lists is
read from disk exactly once.
• Thus, the total number of block reads is 100,000 in the second

phase, just as for the first.

• Likewise, each record is placed once in an output block, and
each of these blocks is written to disk once.
• Thus, the number of block writes in the second phase is also

100,000.

• We conclude that the second phase takes another 38
minutes.

Total time

• Total: Phase 1 + Phase 2 = 38 + 38 = 76 minutes! (Ratio of
disk data size to main memory is 20)

Advantage of larger blocks
• In our analysis block size is 20K.

• What would happen if the block size is 40K?

• The number of blocks to read and write is now 50,000 (half of 100,000)

• Each read and write takes longer, so each I/O is more expensive

• Now, the only change in the time to access a block would be that the transfer
time increases to 0.50*2=1 ms, the average seek time and rotational delay
remain the same

• The time for block size 40K: (2 * 50,000 disk I/Os for phase I + 2 * 50,000 disk I/Os
for phase II)*12 ms = 2400 ms for both phases = 40 min (vs. 76)!

I/O time per block – avg 12 ms:
6 ms – average seek time
5 ms – average rotational delay
1 ms – transfer time for 40K block

Another example: block size = 500K

• For a block size of 500K the transfer time per block is
0.5*25=12.5 milliseconds.

• Average block access time would be

11 + 12.5 approx. 24 ms, (as opposed to 11ms we had)

• However, now a block can hold 100*25 = 2500 records and the
whole table will occupy 10,000,000 / 2500 = 4000 blocks (as
opposed to 100,000 blocks we had before).

• Thus, we would need only 4000 * 2 * 2 disk I/Os for 2PMMS
for a total time of 4000 * 2 * 2 * 24 = 384,000ms or about 6.4
min

• Speedup:

76 / 6.4 = 12 fold !

I/O time per block – avg 25 ms:
6 ms – average seek time
5 ms – average rotational delay
12.5 ms – transfer time for 500K block

Reasons to limit the block size
1. We cannot use blocks

that cover several tracks
effectively

2. Small relations would
occupy only a fraction of
a block, so large blocks
would waste space on
disk

3. The larger the blocks
are, the fewer records
we can sort by 2PMMS
(less runs we can merge
in Phase II)

$ sudo hdparm -I /dev/sda

/dev/sda:
ATA device, with non-removable media

Model Number: ST3500630AS
Serial Number: 9XXYZ845YZ
Firmware Revision: 3.AAK

Standards:
Supported: 7 6 5 4
Likely used: 7

Configuration:
Logical max current
cylinders 16383 16383
heads 16 16
sectors/track 63 63
--
CHS current addressable sectors:

…

Nevertheless, as machines get more memory and disks more
capacious, there is a tendency for block sizes to grow.

Find out parameters of a hard drive in Unix

Max number of records we can sort in 2
passes

Phase 2

• How many input buffers we can have at most in Phase II?

M/B -1

at least 1 block per buffer

one separate block for output buffer

Phase 1

• How many sorted sublists max?

(M/B)-1

• How many records max we can sort in 1 sublist?

M/R

Hence, we are able to sort (M/R)*[(M/B)-1] ≈ M2/RB records

B - block size in bytes.
M - main memory in bytes.
R – size of one record in
bytes.

M=100MB = 100,000,000 Bytes =
108 Bytes

B = 20,000 Bytes

R = 100 Bytes

So, M2/RB = (108)2 / (100 * 20,000)
= 6 * 109 records,

100 bytes each

or relation of 600 GB

- just with 100MB of memory!

Example: Max number of records we can
sort in 2 passes

B - block size in bytes.
M - main memory in bytes.
R – size of one record in
bytes.

M2/RB
records

M2/B
bytes

How many runs to have

• In general, we want to have a larger buffer for each run
where we would buffer several blocks at a time, taking
advantage of sequential access, and thus we want to have a
comparatively small number of big runs k:

• Phase I : k > N/M , because we can sort at most M bytes of
input in RAM

• Phase II: k < M/B -1, because we cannot have more input
buffers of size at least 1 block

B - block size in bytes.
M - main memory in bytes.
N – size of input in bytes

M/B -1 > k > N/M

Space for experiments: Assignment 1.2

Sorting larger relations

• What if N/M > M/B -1?

i.e. we need to produce so many runs in Phase I, that we
cannot allocate at least 1 block for each run in Phase II?

• Then we first produce much longer runs using 2PMMS:
each run will be of max length M/B *M

• In Phase III we merge this runs, the maximum we can
merge is M/B runs of size M2/B each.

• With 3 passes we can sort relation of size M3/B2 bytes!

M/B -1 > k > N/M

B - block size in bytes.
M - main memory in bytes.
N – size of input in bytes

Example: max size we can sort in
3 passes

• Memory M = 100 MB = 108 bytes

• Block size = 20 KB = 2*104 bytes

• In 3 passes we can sort

(108)3 /4* 108 = 2.5*1015 bytes =

2.5 PB!

M3/B2

1 KB 103

1 MB 106

1 GB 109

1 TB 1012

1 PB 1015

Sorting efficiency is crucial:

• Duplicate elimination

• Grouping and aggregation

• Union, intersection, difference

• Join

Performance tricks for improving the
Running Time of 2PMMS

• Blocked I/O
Reading into buffer P blocks (pages) at a time, instead of
one block

• Double-buffering (“Prefetching”)
2 block-buffers per run, once the first is processed, it gets
refilled while CPU is working on the second

• Cylindrification and multiple disks

Cylindrification
Idea: Place all input blocks by cylinder, so once we reach that

cylinder we can read block after block, with no seek time or
rotational latency (Assuming this is the only process running in
the machine that needs disk access).

Application to Phase 1 of 2PMMS

• Because we have only transfer time, we can do Phase I for sorting
100,000 blocks (2 I/Os – read and write) in:

2*100,000*1ms = 200 sec = 3.3 min

But, Phase 2 …?

I/O time per block – avg 12 ms:
6 ms – average seek time
5 ms – average rotational delay
1 ms – transfer time for 40K block

I/O time per block – 1 ms:

Cylindrification – Phase 2

• Storage by cylinders does not help in Phase II
• Blocks are read from the fronts of the sorted lists in an order that is

determined by which list next exhausts its current block.

• Output blocks are written one at a time, interspersed with block
reads

• Thus, the second phase will still take 38 min.

• Total: 38+3 = 41 min vs 76 min

• We have cut the sorting time almost half, but cannot do
better by cylindrification alone.

Multiple Disks and Cylindrification

• Use several disks with independent heads

• Example: Instead of a large disk of 1TB, let’s use 4 smaller disks
of 250GB each

• We divide the given records among the four disks; the data
will occupy adjacent cylinders on each disk.

• We distribute each sorted list onto the four disks, occupying
several adjacent cylinders on each disk.

1 2 3 4

5 6 7 8
4

8

3

7
2

6

1

5

Multiple Disks – Phase 2

• Phase 2:

• Use 4 output buffers, one per disk, and cut writing time
in about 1/4.

• When we need to fill an input buffer, we can perform
several block reads in parallel. Potential for a 4-fold
speedup.

• In practice, we get 2-3 fold speedup for Phase 2.

• Total time 3 + 38/3 15 min

Remember?

Improvement over the tape…

Jacobs:

“A further point that’s widely under-appreciated: in
modern systems, as demonstrated in the figure, random
access to memory is typically slower than sequential access
to disk. Note that random reads from disk are more than
150,000 times slower than sequential access; SSD improves
on this ratio by less than one order of magnitude.

In a very real sense, all of the modern forms of storage
improve only in degree, not in their essential nature,
upon that most venerable and sequential of storage
media: the tape.”

A Tape algorithm (Knuth, Vol. 3)
• Balanced 2-way merge with 4 "working tapes"

• During the first phase, sorted runs produced by the main-
memory sorting are placed alternately on Tapes 1 and 2,

• Then Tapes 1 and 2 are rewound to their beginnings, and
we merge the runs from these tapes, obtaining new runs
which are twice as long as the original ones;

• The new runs are written alternately on Tapes 3 and 4 as
they are being formed.

• Then all tapes are rewound, and the contents of Tapes 3
and 4 are merged into quadruple-length runs recorded
alternately on Tapes 1 and 2.

A Tape algorithm (cont.)

• The process continues, doubling the length of runs each
time, until only one run is left (namely the entire sorted
file).

• If S runs were produced during the internal sorting phase
this balanced 2-way merge procedure makes Iog S merging
passes over all the data (not log N)

From Knuth, “The art of computer programming”, Vol 3, p.299

Tape algorithm example. Phase I

• 5000 records are to be sorted with a main memory capacity
of 1000

Sort R1 . . . R1000; R1001 . . R2000; R2001 . . . R3000; R3001 . . . R4000

R4001 . . . R5000 and distribute into tape 1 and tape 2:

Tape 1: R1 . . . R1000; R2001 . . . R3000; R4001 . . . R5000

Tape 2: R1001 . . R2000; R3001 . . . R4000

Tape 3: (empty)

Tape 4: (empty)

Tape algorithm example. Phase II

• Input to Phase II:

Tape 1: R1 . . . R1000; R2001 . . . R3000; R4001 . . . R5000

Tape 2: R1001 . . R2000; R3001 . . . R4000

Tape 3: (empty)

Tape 4: (empty)

• Output of Phase II:

Tape 3: R1 . . . R2000; R4001 . . . R5000

Tape 4: R2001 . . . R4000

Tape 1: to erase

Tape 2: to erase

Tape algorithm example. Phase III

• Input to Phase III:

Tape 3: R1 . . . R2000; R4001 . . . R5000

Tape 4: R2001 . . . R4000

• Output of Phase II:

Tape 1: R1 . . . R4000

Tape 2: R4001 . . . R5000

• Finally – merge Tape 1 and Tape 2

Tape algorithm: toy example

• Sorted runs are written alternately to tapes 1 and 2:

1, 4, 6, 3, 8, 10, 2, 7, 11, 5, 9, 12

Tape 1: 1, 4, 6, 2, 7, 11

Tape 2: 3, 8, 10, 5, 9, 12

Empty tapes:

Tape 3:

Tape 4:

Tape algorithm: toy example –
rewind 2 tapes
Tape 1: 1, 4, 6, 2, 7, 11

Tape 2: 3, 8, 10, 5, 9, 12

Empty tapes:

Tape 3:

Tape 4:

Tape algorithm: toy example -
merge
Tape 1: 1, 4, 6, 2, 7, 11

Tape 2: 3, 8, 10, 5, 9, 12

Merge into:

Tape 3: 1, 3, 4, 6, 8, 10

Tape 4: 2, 5, 7, 9, 11, 12

Tape algorithm: toy example –
rewind 4 tapes
Tape 1: 1, 4, 6, 2, 7, 11

Tape 2: 3, 8, 10, 5, 9, 12

Merge into:

Tape 3: 1, 3, 4, 6, 8, 10

Tape 4: 2, 5, 7, 9, 11, 12

Tape algorithm: toy example -
final merge

Input:

Tape 3: 1, 3, 4, 6, 8, 10

Tape 4: 2, 5, 7, 9, 11, 12

Merge:

Tape 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Tape algorithm: while rewinding
the tape
• Sorted runs:

1, 4, 6, 3, 8, 10, 2, 7, 11, 5, 9, 12

Tape 1: 1, 4, 6, 2, 7, 11
Tape 2: 3, 8, 10, 5, 9, 12

While rewinding Tape 1 and Tape 2, merge backwards –
and write on Tapes 3, 4 in descending order:
Tape 3:
Tape 4:

Tape algorithm: while rewinding
the tape
• Sorted runs:

1, 4, 6, 3, 8, 10, 2, 7, 11, 5, 9, 12

Tape 1: 1, 4, 6, 2, 7, 11
Tape 2: 3, 8, 10, 5, 9, 12

While rewinding Tape 1 and Tape 2, merge backwards –
and write on Tapes 3, 4 in descending order:
Tape 3: 12, 11, 9, 7, 5, 2
Tape 4: 10, 8, 6, 4, 3, 1

Tape algorithm: while rewinding
the tape

Inputs tapes:

Tape 3: 12, 11, 9, 7, 5, 2

Tape 4: 10, 8, 6, 4, 3, 1

Merge:

Tape 1:

Tape algorithm: while rewinding
the tape

Inputs tapes:

Tape 3: 12, 11, 9, 7, 5, 2

Tape 4: 10, 8, 6, 4, 3, 1

Merge:

Tape 1: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Unfortunately, we cannot read from the hard disk backwards!

But we have a random access!

Summary

• Disk constraints require different algorithms which reduce
the number of disk I/Os

• The fastest and widely used sorting algorithm for large
inputs is 2PMMS

K Main memory buffers

INPUT 1

INPUT B-1

OUTPUT

DiskDisk

INPUT 2

.

Reflect about:

• How would you implement efficient random shuffling of
very large inputs?

• How would you incorporate duplicate elimination into the
sorting algorithm?

• What data structure to use best for the selection of the
smallest key under current pointer in all input buffers?

