
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Data transfer between
disk and RAM

Buffer management in DBMS

By Marina Barsky
Winter 2017, University of Toronto

Lecture 02.03

Data must be in RAM to operate on it!

Buffering disk blocks in main
memory
• In order to provide efficient access to disk block data, every

DBMS implements a large shared buffer pool in its own
memory space

• The buffer pool is organized as an array of frames, each
frame size corresponds precisely to a size of a single
database disk block.

• Blocks are copied in native format from disk directly into
frames, manipulated in memory in native format, and
written back.

Buffer pool

DB

MAIN MEMORY

DISK

disk page

free frame

Page Requests from Higher Levels

BUFFER POOL

choice of frame dictated
by replacement policy

Table of <frame#,pageid> pairs is maintained.

Page table

• Associated with the array of frames is an array of metadata

called a page table

• The page table contains for each frame:

• the disk location for the corresponding page

• a dirty bit to indicate whether the page has changed

since it was read from disk

• any information needed by the page replacement policy

used for choosing pages to evict on overflow.

• a pin count for the page in the frame

Pinning and unpinning pages

• Each frame with a page in it has an associated pin count

• The task requests the page – and “pins” it by incrementing
the pin count before manipulating the page, and
decrementing it thereafter (unpins)

• The same page in pool may be requested many times, and
pin count changes accordingly

• When requestor of a page unpins it, it sets a dirty bit to
indicate that this page has been modified.

• A page is a candidate for replacement iff pin count = 0

• Concurrency & recovery may entail additional I/O when a
frame is chosen for replacement (Write-Ahead Log protocol)
→Buffer manager tries to not replace dirty pages – it may
be expensive

Algorithm for loading pages into
buffer

if requested page is not in pool

choose a frame for the page:

if there are no free frames:

choose the frame for replacement

if frame is dirty: write it to disk

read requested page into chosen frame

pin the page and return its address.

If requests can be predicted (e.g., sequential scans) pages can be
pre‐fetched several pages at a time

Page faults

• A page fault occurs when a program requests data from a
disk block and the corresponding page is not in buffer pool

• The thread is put into a wait state while the operating
system finds the page on disk and loads it into a memory
frame

• The goal is to have the least number of page faults possible
– to always keep necessary pages in buffer

• This is not possible with very large databases. We need to
be able to replace pages in the buffer pool

Page replacement policy

Frame is chosen for replacement by a replacement policy:

• First-in-first-out (FIFO)

• Least-recently-used (LRU)

• Clock

• Most-recently-used (MRU)

etc.

Least Recently Used (LRU)

• Replace the page that has not been referenced for the
longest time

• Maintain a stack (queue?) of recently used pages

LRU page replacement algorithm:
sample run

Req. c a d b e b a b c d

c c c c

a a a

d d

b

F F F F

4 RAM
frames

c a d b

Req. c a d b e b a b c d

c c c c e

a a a a

d d d

b b

F F F F F

4 RAM
frames

LRU page replacement algorithm:
sample run

Req. c a d b e b a b c d

c c c c e e e e

a a a a a a a

d d d d d d

b b b b b

F F F F F

4 RAM
frames

LRU page replacement algorithm:
sample run

Req. c a d b e b a b c d

c c c c e e e e e

a a a a a a a a

d d d d d d c

b b b b b b

F F F F F F

4 RAM
frames

d e a b

LRU page replacement algorithm:
sample run

Req. c a d b e b a b c d

c c c c e e e e e

a a a a a a a a

d d d d d d c

b b b b b b

F F F F F F

4 RAM
frames

LRU page replacement algorithm:
sample run Which page is

evicted next?

Req. c a d b e b a b c d

c c c c e e e e e d

a a a a a a a a a

d d d d d d c c

b b b b b b b

F F F F F F F

4 RAM
frames

e a b c

7 page faults for 10 requests

LRU page replacement algorithm:
sample run

Approximate LRU:
the Clock algorithm
• Maintain a circular list of pages

• Use a clock bit (used) to track accessed page
• The bit is set to 1 whenever a page is referenced

• Clock hand sweeps over pages looking for one with
used bit= 0
• Replace pages that haven’t been referenced for one complete

revolution of the clock

The Clock replacement algorithm
Req. c a d b e c a b c d

f1

f2

f3

f4

4 RAM
frames

f1

00

f2

00

f3

00

f4

00

Resident bit Used (clock) bit

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c

f2

f3

f4

F

4 RAM
frames

f1:c

11

f2

00

f3

00

f4

00

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c

f2 a

f3

f4

F F

4 RAM
frames

f1:c

11

f2:a

11

f3

00

f4

00

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c

f2 a a

f3 d

f4

F F F

4 RAM
frames

f1:c

11

f2:a

11

f3:d

11

f4

00

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c

f2 a a a

f3 d d

f4 b

F F F F

4 RAM
frames

f1:c

11

f2:a

11

f3:d

11

f4:b

11

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c

f2 a a a

f3 d d

f4 b

F F F F

4 RAM
frames

f1:c

01

f2:a

11

f3:d

11

f4:b

11

Searching for page to evict

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c

f2 a a a

f3 d d

f4 b

F F F F

4 RAM
frames

f1:c

01

f2:a

01

f3:d

11

f4:b

11

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c

f2 a a a

f3 d d

f4 b

F F F F

4 RAM
frames

f1:c

01

f2:a

01

f3:d

01

f4:b

11

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c

f2 a a a

f3 d d

f4 b

F F F F

4 RAM
frames

f1:c

01

f2:a

01

f3:d

01

f4:b

01

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c e

f2 a a a a

f3 d d d

f4 b b

F F F F F

4 RAM
frames

f1:e

11

f2:a

01

f3:d

01

f4:b

01

Evicted page c

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c e e

f2 a a a a c

f3 d d d d

f4 b b b

F F F F F F

4 RAM
frames

f1:e

11

f2:c

11

f3:d

01

f4:b

01

Evicted page a – its clock bit was 0

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c e e e

f2 a a a a c c

f3 d d d d a

f4 b b b b

F F F F F F F

4 RAM
frames

f1:e

11

f2:c

11

f3:a

11

f4:b

01

Evicted page d

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c e e e e

f2 a a a a c c c

f3 d d d d a a

f4 b b b b b

F F F F F F F

4 RAM
frames

f1:e

11

f2:c

11

f3:a

11

f4:b

11
We know that b is in buffer

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c e e e e e

f2 a a a a c c c c

f3 d d d d a a a

f4 b b b b b b

F F F F F F F

4 RAM
frames

f1:e

11

f2:c

11

f3:a

11

f4:b

11
We know that c is in buffer

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c e e e e e

f2 a a a a c c c c

f3 d d d d a a a

f4 b b b b b b

F F F F F F F

4 RAM
frames

f1:e

11

f2:c

11

f3:a

11

f4:b

11

Where does d go:
A: frame 1
B: frame 2
C: frame 3
D: frame 4

The Clock replacement algorithm
Req. c a d b e c a b c d

f1 c c c c e e e e e

f2 a a a a c c c c

f3 d d d d a a a

f4 b b b b b b

F F F F F F F

4 RAM
frames

f1:e

11

f2:c

11

f3:a

11

f4:b

11

Where does d go:
A: frame 1
B: frame 2
C: frame 3
D: frame 4

Optimizing Clock:
The Second Chance algorithm
• There is a significant cost to replacing dirty pages

• Modified Clock algorithm allows dirty pages to always
survive one sweep of the clock hand

• Assuming there are 4 classes of pages:

Used
bit

Dirty
bit

Class 1 0 0

Class 2 0 1

Class 3 1 0

Class 4 1 1

• During the first revolution of the clock –
unset the used bit as before, and evict
page of Class 1 if found

• If no pages of Class 1 found during the
entire revolution, in the next revolution
evict page of Class 2, writing its dirty
content to disk

Replacement policy depends on
data access pattern
• Policy can have big impact on # of I/O’s; depends on the

access pattern.

• Sequential flooding: Nasty situation caused by LRU +
repeated sequential scans.

buffer frames < # pages in file

In this case each page request causes an I/O. MRU much
better in this situation (but not in other situations)

Sequential flooding example:
nested loop

req. a a a a b b b b

req. c d e f c d e f

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

Sequential flooding example:
nested loop

req. a a a a b b b b

a a a

F

req. c d e f c d e f

c c c

d d

e

F F F

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

Sequential flooding example:
nested loop

req. a a a a b b b b

a a a a

F

req. c d e f c d e f

c c c f

d d d

e e

F F F F

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

f evicts c

Sequential flooding example:
nested loop

req. a a a a b b b b

a a a a a

b

F F

req. c d e f c d e f

c c c f f

d d d c

e e e

F F F F F

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

c evicts d

Sequential flooding example:
nested loop

req. a a a a b b b b

a a a a a a

b b

F F

req. c d e f c d e f

c c c f f f

d d d c c

e e e d

F F F F F F

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

d evicts e

Sequential flooding example:
nested loop

req. a a a a b b b b

a a a a a a a

b b b

F F

req. c d e f c d e f

c c c f f f e

d d d c c c

e e e d d

F F F F F F F

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

e evicts f

Sequential flooding example:
nested loop

req. a a a a b b b b

a a a a a a a a

b b b b

F F

req. c d e f c d e f

c c c f f f e e

d d d c c c f

e e e d d d

F F F F F F F F

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

f evicts c

Sequential flooding example:
nested loop

req. a a a a b b b b

a a a a a a a a

b b b b

F F

req. c d e f c d e f

c c c f f f e e

d d d c c c f

e e e d d d

F F F F F F F F

3
frames
for A -

enough

for each record i in A

for each record j in B

do something with i and j

A: a, b
B: c, d, e, f

3
frames
for B
< |B|

Sequential flooding
– each request –
page fault

LRU happens to
evict exactly the
page which we will
need next!

Sequential flooding

• The LRU page which we evict is always exactly the page we
are going to want to read next!

• We end up having to read a page from disk for every page
we read from the buffer

• This seems like an incredibly pointless use of a buffer!

Solutions

• General idea: to tune the replacement strategy via query
plan information

• Most systems use simple enhancements to LRU schemes to
account for the case of nested loops;

• Implemented in commercial systems - LRU-2 (evicts
second to last frame)

• The replacement policy depending on the page type:
e.g. the root of a B+-tree might be replaced with a
different strategy than a page in a heap file, nested
loops use MRU etc.

DBMS vs OS buffer management

• DBMS is better at predicting the data access patterns

• Buffer management in DBMS is able to:

• Pin a page in buffer pool

• Force a page to disk (required to implement CC &
recovery)

• Adjust replacement policy

• Pre-fetch pages based on predictable access patterns

• This allows DBMS to

• Amortize rotational and seek costs

• Better control the overlap of I/O with computation
(double-buffering)

• Leverage multiple disks

Think about

• Think about how would you implement LRU replacement
policy? Clock algorithm? LRU-2?

• What is the difference between FIFO and LRU?

• Show on an example how MRU can be used to prevent
sequential flooding

• Example of a computation where LRU is efficient

Similar questions could be on the third quiz and on the exam

