Roadmap

[Handling large amount of data efficiently]

/

[Stable storage]

el Implementing
Paralle ili —
External memory { resilience

: dataflow : ;
algorithms and coping V_Vlth
system failures

data structures

Algorithms for
MapReduce

Implementing
relational
operators

Implementing
concurrency

Introduction to
query optimization

Lecture 02.04

Disk data structures:
Static indexes

By Marina Barsky
Winter 2017, University of Toronto

Combining pages (blocks) into
files

Which block of a file should a record go to ?
l. Anywhere ? “Heap” organization
* How to search for “SID= 123" ?
Il. Sorted by some key ? “Sequential” organization
* Keeping it sorted could be painful
Ill. Based on a “hash” key? “Hashing” organization

e Store the record with SID = x in the block number
h(x)%1000

. Heap files

* Heap files — unordered set of disk blocks — simplest file
structure. Contains blocks in no particular order

* As file grows and shrinks, disk blocks are allocated and de-
allocated
* We must:
» Keep track of all the pages in a file
* Keep track of pages with free space on them

Example: Heap implemented as
doubly-linked list

N N T

Data Data Data Full Pages
Page Page Page
Header J N
\ Data Data Data o
P P P Pages with
age a8¢ a8¢ Free Space

* The header page id and Heap file name must be stored someplace.
* The header page contains 2 ‘pointers’ — block IDs
e Each page contains 2 ‘pointers’ in addition to page header and data

Example: Heap with page

directory

* The entry for a page can
include the number of free
bytes on the page.

* The directory is a collection
of pages by itself: linked list
implementation is just one
alternative.

* Much smaller than
linked list of all data
pages!

Header
Page

DIRECTORY

Data
Page 1

Data
Page 2

Data
Page N

. Sequential (sorted) file
organization

» Keep pages sorted by some key in the records

* Insertion
* Find the block in which the tuple should be
* If there is free space, insert it
e Otherwise, create an overflow page, and link from the
corresponding page Can create a long list of overflow pages
* Deletions
* Delete and keep the record of a free space
* Databases tend to be insert-heavy, so free space gets used fast

Can become fragmented: must reorganize once in a while

I1l. Hash-based file organization

Allocate file with 4 pages

Block O
(1000, “A”,...)
Store record with search key k in Eigga ?C',',“))
block number h(k) % 4, where S Ao
h(k) is a hash function (401, “Ax",...)
(21, “Bx”,...)
Buckets
Blocks are called “buckets”
(1002, “Ay”,...) W
10, “By”,...
What if the bucket becomes full ? (Vi)
Overflow pages. As file grows, P Block 3
the search becomes inefficient 235 ,,éz,,z))

File manager component of DBMS

* The file manager component takes care of file
manipulations

* It interacts directly with the disk blocks, bypassing operating
system

* Itis a complex piece of software whose detailed
implementation is outside the scope of this course

Comparing efficiency of file
organizations

e Operations to compare:
e Scan: fetch all records from disk
* Equality search: find record with key = k

e Range selection: find all records where key is between a
and b

* |Insert a record
Delete a record

Cost Model for Our Analysis

N — total number of data pages (file blocks)

* We calculate the average number of disk |/Os per operation

* We ignore CPU costs in our model

Note 1: Measuring number of page I/O’s ignores differences
between random and sequential 1/Os

Note 2: Average-case analysis; based on several simplistic
assumptions

Good enough to show the overall trends!

Assumptions

- Sorted Files:
Files compacted after deletions, no overflow pages

- Heap Files:
Equality selection on key - exactly one match

« Hash:
No overflow buckets

Cost of operations for different file
organizations (in disk 1/0s)

N - number of data pages

Scan Equality Range Insert Delete

(1) Heap

(2) Sorted

(3) Hashed

Cost of operations for different file

organization (in disk 1/0s)

N - number of data pages

Scan Equality Range Insert Delete
(1) Heap N 0.5N N 2 0.5N +1
(2) Sorted N log, N log, N + log, N+ N log, N + N
output
(3) Hashed | N 1 N 2 2

* Several assumptions underlie these (rough) estimates!

Cost of operations for different file

organization (in disk 1/0s)

N - number of data pages

Scan Equality Range Insert Delete
(1) Heap N 0.5N N 2 0.5N +1
(2) Sorted N log, N log, N + log, N+ N log, N + N
output
(3) Hashed | N 1 N 2 X 2
Why 27 \

Always insert at the end of the file:
11/0 to read, 1 to write back

Cost of operations for different file

organization (in disk 1/0s)

N - number of data pages

Scan Equality Range Insert Delete
(1) Heap N 0.5N N 2 0.5N +1
(2) Sorted N log, N log, N + log, N+ N lo 1'+ N
output
(3) Hashed | N 1 N 2 2
Why +17? /

Find the page (average equality search),
mark record as deleted and write back

Cost of operations for different file

organization (in disk 1/0s)

N - number of data pages

Scan Equality Range Insert Delete
(1) Heap N 0.5N N 2 0.5N +1
(2) Sorted N log, N log, N + log, N+ N log, N + N
output f
(3) Hashed | N 1 N 2 / 2
Why +N? /

Find the page, insert record, shift all the
pages, assuming there are no empty slots

Not very efficient:
example - search

* Find an Account info for SIN = 123

* Sequential file: log(N) disk accesses - Random accesses!
* For N =1,000,000,000 log(N)=30
* Each random access =10 ms
* 300 ms to find just one account information!

* <4 requests satisfied per second

Conclusion

* Heap, sequential, and hash-based file organizations are not
very efficient in most cases

* We need more sophisticated data structures

Introducing Indexes

* Index - a data structure for efficient search through large
databases (Think - library index/catalogue)

* Goal: quickly locate the record given a key

* Two key ideas:
* The records are mapped to the disk blocks in specific
ways

* Auxiliary data structures allow quick search

Key ideas

* |dea 1:

* The records are mapped to the disk blocks in specific ways:
we deduce the disk location from a key, because record is
in the block which is a hash of a key

* |dea 2:
 Store records in a pile (heap or sorted)

* Provide auxiliary data structures guiding the search, which
are significantly smaller than the data itself

Flat indexes

* Have a catalog of search keys which is smaller than the
entire table and can be searched more efficiently (in RAM or
with less disk 1/0s)

* Inside the index each value of a key is associated with a
unique, system-generated physical address of a
corresponding tuple on disk: RID (file number, block
number, slot within the data block)

Dense indexes

* Dense index — each record has its representative inside
index

* If the table has multiple fields, the index stores only key-RID
pair and is much smaller — may fit into RAM

* The keys in the index are sorted: use binary search, buffer
guiding pointers at 1/2N, 1/4N, 3/4N, 1/8N, 3/8N, 5/8N,
7/8N —th positions to save disk 1/Os

Example:

dense index for sorted file

Sorted file

Additional
structure
on top

Index

10

20

10

30

20

40

30

50

40

60

70

50

80

60

70

90

100

80

110

120

90

100

LT AL L

Data records

Example: dense index for heap file

Index Heap file
10 N\ 20
10 \ \/ 40
0 | X
20 Q& 10
20
20 \ /
30 % 50
40 / \ 30

\

50

10

50 - 50
60 ~—

77 N

/.

Can answer if the record exists even without accessing it on disk

Sparse indexes

* Sparse index — contains key-RID pairs for only a subset of
records, typically first in each block.

* Works only with sequential (sorted) files Why?

* Allows for very small indexes - better chance of fitting in
memory

* Tradeoff: must access the relation file even if the record is
not present

Example: sparse index

Index Sorted file
10 — > 10
30 — 20
50 *\‘

70 — 30
40
90 —
110 —~ 50
130 f-\\v 60
150 '"\\V
} 70
170 —~ 80
190 “‘*\\V
210 ___\} 90
230 '—-\} 100
¥

Primary indexes

Primary Sorted file
Index

* Primary index —indexona [! — 10

20

sorted file for the sorting 22 —

attribute 40 — 30

40

* Only one primary index per []

relation — otherwise needs 60 — 50

to maintain several sorted 0] 60

80 —
copies of the same data -

90 — 80

100]

110 — 90

120] 100

i aatra VAN

Secondary indexes

e Secondary index — index on any other attribute, does not
"control placement."

Example:
e Relation sorted on branch
e But we want an index on balance

A-217 | Brighton 750 |~
350 A-101 | Downtown | 500 | -~
400 A-110 | Downtown | 600 .
500 A-215 | Mianus 700 | -
600 A-102 | Perryridge 400 -
700 A-201 | Perryridge |900| J

750
900

A-218 | Perryridge |700| -
A-222 | Redwood 700 |
A-305 | Round Hill | 350 |

MLVAVAVAVIVAVAVAY

* Secondary index must be dense Why?

What if a flat index is too big?

Example:
* Relation of size: N = 500 GB = 5*10%! bytes

* 100 tuples per block: 5*10° blocks to index
* Each key-RID pair is at least 16 bytes

* So, even keeping one entry per page (sparse index)
takes too much space - 8 GB

Solution: build an index on the index itself!

Multi-level indexes - static trees

e If distribution of keys is not very skewed and we know the
range of keys in advance, we can allocate data pages to keep
records sorted, and build on top a tree of search-guiding
dividers

* This tree is static, and is never modified

Example: static trees

2-level search-guiding ternary tree

Root ~—au
40
r h To records
/ w&keys >=40
20 | | 33 51| |63
/ \
/ ¥ V \
10* | 15* 20% | 27* 33* | 37+ 40% | 46* 51* | 55* 63* | 97*

Data pages (sorted)

Static tree: Insertion

* Inserting 23*, 48*, 41*, 42*

Root —~——=au

Index j 40 R
Pages / \

20 33 51|63

/.
Primary / v \ / v \
Leaf 10% | 15* 20 | 27+ 33+ | 37+ 40 | 46* 51 | 55* 63« | 97
Pages \ \

1})
Overflow 23* 48« | 41*
Pages l

42*

Static trees: deletion

e Deleting 42*, 51*, 97*

Root —au

40

/ \ The page can

become empty,

21 % but index is not

/ l L \ updated

10* | 15+ 20% | 27* 33* | 37* 40* | 46* 55+ 63*
23+ ag | 41*

Note that 51* appears in index levels, but not in leaf!

Static trees: pro and contra

* To build ISAM index, the sorted data is distributed among pages, leaving each
data page half-full to accommodate future insertions

 The index tree is built on top of the sorted file, and is never modified

Good:

* Updates affect only the level of data pages — no need to worry of modifying
by multiple users — no locking of the index pages

Bad:

 If data file grows (especially with skewed keys) the number of overflow

pages becomes too big for efficient search

» Skewed deletions may leave a lot of unused empty space, which never gets

filled with new records

Dynamic indexes

We need a dynamic data structure, which will guarantee an
efficient search in any case and will accommodate database
modifications

2 main indexing data structures:
* Dynamic Trees

* Dynamic Hashes

