
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Disk data structures:
Static indexes

Lecture 02.04

By Marina Barsky
Winter 2017, University of Toronto

Combining pages (blocks) into
files
Which block of a file should a record go to ?

I. Anywhere ? “Heap” organization

• How to search for “SID= 123” ?

II. Sorted by some key ? “Sequential” organization

• Keeping it sorted could be painful

III. Based on a “hash” key? “Hashing” organization

• Store the record with SID = x in the block number

h(x)%1000

I. Heap files

• Heap files – unordered set of disk blocks – simplest file
structure. Contains blocks in no particular order

• As file grows and shrinks, disk blocks are allocated and de-
allocated

• We must:

• Keep track of all the pages in a file

• Keep track of pages with free space on them

Example: Heap implemented as
doubly-linked list

Header
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Data
Page

Pages with
Free Space

Full Pages

• The header page id and Heap file name must be stored someplace.
• The header page contains 2 ‘pointers’ – block IDs
• Each page contains 2 `pointers’ in addition to page header and data

Example: Heap with page
directory

• The entry for a page can
include the number of free
bytes on the page.

• The directory is a collection
of pages by itself: linked list
implementation is just one
alternative.

• Much smaller than
linked list of all data
pages!

Data
Page 1

Data
Page 2

Data
Page N

Header
Page

DIRECTORY

II. Sequential (sorted) file
organization
• Keep pages sorted by some key in the records

• Insertion

• Find the block in which the tuple should be

• If there is free space, insert it

• Otherwise, create an overflow page, and link from the

corresponding page Can create a long list of overflow pages

• Deletions

• Delete and keep the record of a free space

• Databases tend to be insert-heavy, so free space gets used fast

Can become fragmented: must reorganize once in a while

III. Hash-based file organization

• Allocate file with 4 pages

• Store record with search key k in
block number h(k) % 4, where
h(k) is a hash function

• Blocks are called “buckets”

• What if the bucket becomes full ?
Overflow pages. As file grows,
the search becomes inefficient

(1000, “A”,…)
(200, “B”,…)
(4044, “C”, …)

(401, “Ax”,…)
(21, “Bx”,…)

(1002, “Ay”,…)
(10, “By”,…)

(1003, “Az”,…)
(35, “Bz”,…)

Block 0

Block 1

Block 2

Block 3

Buckets

File manager component of DBMS

• The file manager component takes care of file
manipulations

• It interacts directly with the disk blocks, bypassing operating
system

• It is a complex piece of software whose detailed
implementation is outside the scope of this course

Comparing efficiency of file
organizations

• Operations to compare:

• Scan: fetch all records from disk

• Equality search: find record with key = k

• Range selection: find all records where key is between a
and b

• Insert a record

• Delete a record

Cost Model for Our Analysis

N – total number of data pages (file blocks)

• We calculate the average number of disk I/Os per operation

• We ignore CPU costs in our model

Note 1: Measuring number of page I/O’s ignores differences
between random and sequential I/Os

Note 2: Average-case analysis; based on several simplistic
assumptions

Good enough to show the overall trends!

Assumptions

• Sorted Files:

Files compacted after deletions, no overflow pages

• Heap Files:

Equality selection on key - exactly one match

• Hash:

No overflow buckets

Cost of operations for different file
organizations (in disk I/Os)

Scan Equality Range Insert Delete

(1) Heap

(2) Sorted

(3) Hashed

N - number of data pages

Cost of operations for different file
organization (in disk I/Os)

* Several assumptions underlie these (rough) estimates!

Scan Equality Range Insert Delete

(1) Heap N 0.5N N 2 0.5N +1

(2) Sorted N log2 N log2 N +
output

log2 N + N log2 N + N

(3) Hashed N 1 N 2 2

N - number of data pages

Cost of operations for different file
organization (in disk I/Os)

Scan Equality Range Insert Delete

(1) Heap N 0.5N N 2 0.5N +1

(2) Sorted N log2 N log2 N +
output

log2 N + N log2 N + N

(3) Hashed N 1 N 2 2

N - number of data pages

Why 2?
Always insert at the end of the file:
1 I/O to read, 1 to write back

Cost of operations for different file
organization (in disk I/Os)

Scan Equality Range Insert Delete

(1) Heap N 0.5N N 2 0.5N +1

(2) Sorted N log2 N log2 N +
output

log2 N + N log2 N + N

(3) Hashed N 1 N 2 2

N - number of data pages

Why +1?
Find the page (average equality search),
mark record as deleted and write back

Cost of operations for different file
organization (in disk I/Os)

Scan Equality Range Insert Delete

(1) Heap N 0.5N N 2 0.5N +1

(2) Sorted N log2 N log2 N +
output

log2 N + N log2 N + N

(3) Hashed N 1 N 2 2

N - number of data pages

Why +N?
Find the page, insert record, shift all the
pages, assuming there are no empty slots

Not very efficient:
example - search

• Find an Account info for SIN = 123

• Sequential file: log(N) disk accesses - Random accesses!

• For N = 1,000,000,000 log(N) = 30

• Each random access ≈10 ms

• 300 ms to find just one account information!

• < 4 requests satisfied per second

Conclusion

• Heap, sequential, and hash-based file organizations are not
very efficient in most cases

• We need more sophisticated data structures

Introducing Indexes

• Index - a data structure for efficient search through large

databases (Think - library index/catalogue)

• Goal: quickly locate the record given a key

• Two key ideas:

• The records are mapped to the disk blocks in specific

ways

• Auxiliary data structures allow quick search

Key ideas

• Idea 1:

• The records are mapped to the disk blocks in specific ways:

we deduce the disk location from a key, because record is

in the block which is a hash of a key

• Idea 2:

• Store records in a pile (heap or sorted)

• Provide auxiliary data structures guiding the search, which

are significantly smaller than the data itself

Flat indexes

• Have a catalog of search keys which is smaller than the

entire table and can be searched more efficiently (in RAM or

with less disk I/Os)

• Inside the index each value of a key is associated with a

unique, system-generated physical address of a

corresponding tuple on disk: RID (file number, block

number, slot within the data block)

Dense indexes

• Dense index – each record has its representative inside

index

• If the table has multiple fields, the index stores only key-RID

pair and is much smaller – may fit into RAM

• The keys in the index are sorted: use binary search, buffer

guiding pointers at 1/2N, 1/4N, 3/4N, 1/8N, 3/8N, 5/8N,

7/8N –th positions to save disk I/Os

Sorted fileIndex

Example:
dense index for sorted file

Additional
structure
on top

Data records

Example: dense index for heap file
Heap fileIndex

Can answer if the record exists even without accessing it on disk

Sparse indexes

• Sparse index – contains key-RID pairs for only a subset of

records, typically first in each block.

• Works only with sequential (sorted) files

• Allows for very small indexes - better chance of fitting in

memory

• Tradeoff: must access the relation file even if the record is
not present

Why?

Example: sparse index
Sorted fileIndex

Primary indexes

• Primary index – index on a

sorted file for the sorting

attribute

• Only one primary index per

relation – otherwise needs

to maintain several sorted

copies of the same data

Sorted filePrimary
Index

Secondary indexes
• Secondary index – index on any other attribute, does not

"control placement."

Example:
• Relation sorted on branch

• But we want an index on balance

• Secondary index must be dense Why?

What if a flat index is too big?

Example:

• Relation of size: N = 500 GB = 5*1011 bytes

• 100 tuples per block: 5*109 blocks to index

• Each key-RID pair is at least 16 bytes

• So, even keeping one entry per page (sparse index)
takes too much space - 8 GB

Solution: build an index on the index itself!

Multi-level indexes - static trees

• If distribution of keys is not very skewed and we know the
range of keys in advance, we can allocate data pages to keep
records sorted, and build on top a tree of search-guiding
dividers

• This tree is static, and is never modified

Example: static trees

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

Data pages (sorted)

To records
with keys >=40

2-level search-guiding ternary tree

Static tree: insertion
• Inserting 23*, 48*, 41*, 42*

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97*

20 33 51 63

40

Root

23* 48* 41*

42*

Overflow

Pages

Leaf

Index

Pages

Pages

Primary

Static trees: deletion

• Deleting 42*, 51*, 97*

10* 15* 20* 27* 33* 37* 40* 46* 55* 63*

20 33 51 63

40

Root

23* 48* 41*

Note that 51* appears in index levels, but not in leaf!

The page can
become empty,
but index is not
updated

Static trees: pro and contra

• To build ISAM index, the sorted data is distributed among pages, leaving each

data page half-full to accommodate future insertions

• The index tree is built on top of the sorted file, and is never modified

Good:

• Updates affect only the level of data pages – no need to worry of modifying

by multiple users – no locking of the index pages

Bad:

• If data file grows (especially with skewed keys) the number of overflow

pages becomes too big for efficient search

• Skewed deletions may leave a lot of unused empty space, which never gets

filled with new records

Dynamic indexes

2 main indexing data structures:

• Dynamic Trees

• Dynamic Hashes

We need a dynamic data structure, which will guarantee an
efficient search in any case and will accommodate database
modifications

