
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

B-trees

Lecture 02.05

By Marina Barsky
Winter 2017, University of Toronto

From binary search trees
to k-2k B-trees

3

R3

1

R1

5

R5

2

R2

4

R4

Binary search tree 2-4 B-tree

3

R3

1 2

R1 R2

4 5

R4 R5

From binary search trees
to k-2k B-trees

3

R3

1

R1

5

R5

2

R2

4

R4

Binary search tree 2-4 B-tree

3

R3

1 2

R1 R2

4 5

R4 R5

At most 2
children

At least k
and at most
2k children

From binary search trees
to k-2k B-trees

3

R3

1

R1

5

R5

2

R2

4

R4

Binary search tree 2-4 B-tree

3

R3

1 2

R1 R2

4 5

R4 R5

Always 1 key At least k-1 and
at most 2k-1 keys

From B-trees to B+ trees

B-tree B+ tree

3

R3

1 2

R1 R2

4 5

R4 R5

3

1 2 3 4 5

R1 R2 R3 R4 R5

Data stored together with the key Data stored separately

B+ tree vs. B-tree
1. B+ -tree is a B-tree where internal nodes contain only keys

and navigation pointers (not records, not pointers to

records), and all the records (or pointers to records) are

stored in leaves.

2. In B+ tree each internal node is stored in a page, and more

keys fit in a single page. The navigational part of the index

is overall smaller, and partly manageable in RAM.

3. The leaf nodes of B+ trees are linked, so doing a full scan of

all objects in a tree requires just one linear pass through all

the leaf nodes. A B tree, on the other hand, would require

a traversal of every level in the tree (random access).

B+ - tree (or simply B-tree)

• B+ tree is the only variant of B-trees used in DBMS

• In all research papers and implementations: we say
B-tree - imply B+ -tree

k-2k B trees: properties I
• Each node contains p pointers: k <= p <= 2k

k=2.
Each node has 2,3,or 4 child pointers and

between 1 and 3 keys

k-2k B trees: properties II
• There are 2 types of nodes:

• Internal (non-leaf) node:

• all p pointers point to the child nodes

• p-1 keys contain navigational info

• Leaf node: 1 pointer points to the next leaf

• p-1 key-value pairs (child pointers), where value can
be RID or the entire record

• the number of child pointers is at least k*

* In practice, the leaf node may have its own parameters on min and max key-value
pairs, because the size of a value in key-value pair can be larger than the pointer used
in the internal node. However, for the purposes of this lecture, we assume that min
number of key-value pairs is k, and max is 2k-1 (1 pointer points to the next leaf).

k-2k B trees: properties III
• Each key in an internal node guides the search:

All keys in the left sub-tree of a given key X have key value < X,
all keys in the right sub-tree have key value >= X

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * * * * * *

3912 21

30

Data entry

• In a key-value pair of B-tree leaves, the value can be:

• RID – which gives an exact location of a data record in a
data file: RID=<block ID, slot #>

• List of RIDs – in case of multiple duplicate keys

• Data record itself

• Let’s call any of this value types a data entry

Degree=order=fanout
=branching factor
• Degree d (=2*k) means that all internal nodes have space for at

most d child pointers

Example

• Each node is stored in 1 block of size 4096 bytes

• Let
• key 4 Bytes,
• pointer 8 Bytes.

• Let’s solve for d:

4(d -1)+ 8(d) 4096

 d 341

B-tree capacity: example

d ≈ 300

a typical node is 67% full (fill factor) ≈ 200 keys in each node

We have:

• 200 keys at the root

• At level 2 – for each key – another 200 keys – total 2002 nodes

• At level 3: 2003

• At level 4: 2004 16 108 records can be indexed.

• Suppose each record = 1 KB - we can index a relation of size

16 108 103 1.6 TB

• If the root and levels 2 and 3 are kept in main memory, then finding RID
requires 1 disk I/O!

Buffering top-level nodes

• Often top levels are held in buffer pool:

• Level 1 = 1 page = 4 KB

• Level 2 = 200 pages = 800 KB

• Level 3 = 40,000 pages = 160 MB

• In this case, in practice, lookup requires 1 disk I/O

B-tree construction from sorted
records (bulk load)
Input: list of records sorted by key:

• Output: 2-4 B-tree index

3 6 9 12 15 18 21 24 27 30 33 36 39 42

R3 R6 R9 R12R15R18 R21R24R27 R30R33R36 R39R42

B-tree construction
1. Leafs
• Distribute records among blocks – 3 records per block

• Link leafs sequentially

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * * * * * *

B-tree construction
2. Parent level
• Each parent node can hold at most 4 pointers – but we have 5 leafs

• We cannot put 4 children and 1 child – because each parent node has to

hold at least 2 pointers

• We build one parent for 3 nodes, and another parent for 2 nodes

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * * * * * *

3912 21

B-tree construction
3. Parent for level 2
• We need to divide keys in the left subtree from the keys in the right sub-

tree

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * * * * * *

3912 21

B-tree construction
3. Parent for level 2
• We need to divide keys in the left subtree from the keys in the right sub-

tree

• All keys in the right subtree are >=30

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * * * * * *

3912 21

B-tree construction
3. Parent for level 2
• We need to divide keys in the left subtree from the keys in the right sub-

tree

• All keys in the right subtree are >=30

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * * * * * *

3912 21

30

B-tree construction: leave space

• In practice, the nodes will be half-filled to leave space for future
insertions

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * *

279 15 39

21 33

* * * *

B-tree lookup

Recursive procedure:

• Ends when we are at a leaf. In this case, look among the
keys there. If the i-th key is K, then the i-th pointer will
contain RID of the desired record.

• If we are at an internal node with keys K1,K2,…,Kd, then if
K<K1we call lookup with the first child node, if K1K<K2 we
use the second child, and so on.

B-tree lookup example

3 6 9 12 15 18 21 24 27 30 33 36 39 42

* * * * * * * * * *

279 15 39

21 33

* * * *

Find record with
key 24

RID of record
with key 24

To record with
key 24

B-tree in action

• When data are inserted or removed from a node, its number of
child nodes changes.

• In order to maintain the pre-defined capacity range, internal
nodes must be joined or split.

• B-tree is a dynamic data structure with a guaranteed upper
bound for lookup, insertion and deletion: O (log d N) disk I/Os

where

N – total number of leaf nodes (leaf blocks)

d – branching factor

B-tree: range search

• Query: select all records where key is in range [x,y]

• Use x as a search key

• Once at the leaf: scan the data entries to find x or the
first key that is > x (if x is not there)

• After that, data entries are retrieved sequentially until
the first record with key > y

B Trees: Summary

• Searching:

• logd(N) – Where d is the order, and N is the maximum total number
of entries in all the leafs

• Insertion:

• Find the leaf to insert into

• If full, split the node, and adjust index accordingly

• Similar cost as searching

• Deletion

• Find the leaf node

• Delete

• May not remain half-full; must adjust the index accordingly

• Either borrow 1 key from the sibling

• Or merge with the sibling if there are not enough keys to
borrow

B-Tree File Organization

• Store the records at the leaves

• This is called a clustered index or clustered file organization

• Sorted order is maintained dynamically without overflow
pages

958157

Record

with key 57 Record

with key 81

Record

with key 95

To next leaf in

sequence

Leaf

File organizations that we know

• Heap

• Sequential

• Hash

• Clustered (B-tree with data records at the leaves)

Cost of operations for different file
organizations (in disk I/Os)

Scan Equality Range Insert Delete

(1) Heap N 0.5N N 2 0.5N +1

(2) Sorted N log2 N log2 N +
output

log2 N + N log2 N + N

(3) Hashed N 1 N 2 2

(4)
Clustered

N logd R logd R + num.
of result
pages

logd R + 2 logd R + 2

N - number of data blocks
R – number of records

More examples of B-tree
in action

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Lookup

Recursive procedure:

If we are at a leaf, look among the keys there. If the i-th key is K, the the i-th

pointer will contain RID of the desired record.

If we are at an internal node with keys K1,K2,…,Kd, then if K<K1we follow

the first pointer, if K1K<K2 we follow the second pointer, and so on.

Try to find a record

with search key 40.

Internal node may

have 1 key and 2

pointers

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Insertion
Try to insert a search

key = 40.

First, lookup for it, in

order to find where to

insert.

It has to go here,

but the node is full!

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Beginning of the insertion of key 40

Observe the new node and the

redistribution of keys and pointers

What’s the problem?

No parent yet for the new node!

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Continuing the Insertion of key 40
We must now insert a

pointer to the new leaf into

this node. We must also

associate with this pointer

the key 40, which is the

least key reachable

through the new leaf.

But the node is full. Thus it

too must split!

13

7 23 31

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Completing of the Insertion of key 40

43

This is a

new node.

•We have to redistribute 3 keys and 4 pointers.

•We leave three pointers in the existing node

and give two pointers to the new node. 43 goes

to the new node.

•But where the key 40 goes?

•40 is the least key reachable via the new node.

13 40

7 23 31

2 3 5 7 11 13 17 19 23 29

31 37

43 47

40 41

Completing of the Insertion of key 40

43

It goes here!

40 is the least key

reachable via the new

node.

Insertion in words
• We try to find a place for the new key in the appropriate leaf, and we put it

there if there is room.

• If there is no room in the proper leaf, we “split” the leaf into two and divide
the keys between the two new nodes, so each is half full or just over half
full.

• Split means “add a new block”

• The splitting of nodes at one level appears to the level above as if a new
key-pointer pair needs to be inserted at that higher level.

• We may thus apply this strategy to insert at the next level: if there is
room, insert it; if not, split the parent node and continue up the tree.

• As an exception, if we try to insert into the root, and there is no room, then
we split the root into two nodes and create a new root at the next higher
level;

• The new root has the two nodes resulting from the split as its children.

13

7 23 31 43

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

Deletion Suppose we delete

key=7

13

7 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Deletion

This leaf node is

less than half full.

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Deletion (Raising a key to parent)

This node is less than half

full. So it borrows key 5 from

the sibling, and updates

parent node

13

5 23 31 43

2 3 5 11 13 17 19 23 29 31 37 41 43 47

Deletion Suppose we delete

now key=11.

No sibling with

enough keys to

borrow.

Note that node

(13,17,29) is not a

sibling – because it

has a different

parent

13

23 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Deletion

We merge, i.e. delete a block from the index.

However, the parent ends up having 1

pointer and zero keys

23

13 31 43

2 3 5 13 17 19 23 29 31 37 41 43 47

Deletion

Parent: Borrow pointer from sibling!

Deletion in words
• We find a place of the deleted key in the appropriate leaf, and

remove the corresponding entry

• If the leaf node was at a minimum capacity before the
deletion, it is now below minimum

• If its most populous sibling contains more than d/2 children
– borrow one and update parent pointer

• Else if there are no nodes to borrow – merge current node
with its sibling

• Update parent pointer. If there are less than d/2 children –
borrow key from right sibling

Exercise (at home)

• First, build B-tree from records with sorted keys:

2,3,5,7,11,13,17,19,23,29,31,37,41,43,47

• Insert key 1

• Insert keys 14,15,16

• Delete key 23

• Delete all keys >23 (in turn)

