
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Dynamic indexes

2 main data structures:

• Dynamic Trees

• Dynamic Hashes

To allow efficient modifications, we need a dynamic
data structure, which will guarantee efficient
operations in any case

By Marina Barsky
Winter 2017, University of Toronto

Lecture 02.06

External-memory hashing

h(key) mod M

h
key

Pages =

blocks =

buckets

2

0

M-1

• Buckets contain data entries.
• Hash function works on search

key k of record r. Must
distribute values over range 0 ...
M-1.
• h(k) = (a * k + b) usually

works well.
• a and b are constants; lots

known about how to tune
h.

Static Hashing
(Hash-based file organization)
• # primary pages fixed, allocated sequentially, never de-

allocated; overflow pages if needed.

• h(k) mod M = bucket to which data entry with key k belongs.
(M = # of buckets)

h(key) mod M

h
key

Primary bucket pages Overflow pages

2

0

M-1

Static Hashing:
increasing number of buckets

• Long overflow chains can develop and degrade performance.

• Efficiency is highest when

#data entries < (#buckets  #(data entries/bucket))

• If file grows, we need a dynamic method to maintain the above
relationship.

• Extensible Hashing: double the number of buckets when
needed.

• Linear hashing: add one more bucket to increase hash
capacity.

Extendible hashing: main idea

• Situation: Bucket (primary page) becomes full. Why not re-
organize file by doubling # of buckets?

• Reading and writing all pages is expensive!

• Idea: Use directory of pointers to buckets, double # of
buckets by doubling the directory, splitting just the bucket
that overflowed!

• Directory much smaller than file, so doubling it is much
cheaper. Only one page of data entries is split.

• No overflow pages!

• Trick lies in how hash function is adjusted!

Extendible hashing

• Assume that the hash function h(k) returns a binary
number.

• The first i bits* of each binary number will be used as
entries in the “directory” which will map these i bits to the
actual bucket.

• Additionally, i is the smallest number such that there are no
more data entries with identical first i bits that can fit into a
single bucket.

*You can also use the last i bits, by reading them backwards. You cannot use the mod
function, because in this case you would need to re-distribute all existing keys: for
example, key with hash …10 which was in bucket 0, now need to go to bucket 10, while
we want to be able to reorganize only a single bucket at a time

Extendible hashing: insertion

• Directory is array of size 2.

• Global depth i=1, i.e. only
the first bit of h(k) defines
placement of a new key

• To find bucket for k, take
first `global depth’ # bits of
h(k)

• If first bit = 0 it is in
bucket pointed to by
directory entry 0.

• If first bit = 1, it is in
bucket pointed to by
directory entry 1

Extendible hashing: insert record
with h(k) = 1010

• If bucket is full, split it
(allocate new page, re-
distribute keys according
to i+1 bits).

• If necessary, double the
directory: increment
global depth i

Extendible hashing: insert record
with h(k) = 1010

Before

Now, after the

insertion

Global depth and local depth

• Global depth of a directory -
max # of bits needed to tell
which bucket an entry
belongs to.

• Local depth of a bucket - #
of bits used to determine if
an entry belongs to this
bucket.

Global depth Local depth

Extendible hashing: insert records with
h(k) = 0000
h(k) = 0111
h(k) = 1000

After the

insertionCurrently

Extendible hashing: insert records with
h(k) = 0000
h(k) = 0111
h(k) = 1000

• After insertion of

h(K)=0000; h(K)=0111.

• Bucket for 00 gets split,

• but i stays at 2.

Extendible hashing: insert records with
h(k) = 0000
h(k) = 0111
h(k) = 1000

• After insertion of

h(K)=0000; h(K)=0111
• Bucket for 0... gets split,
• but i stays at 2.

• After insertion of

h(K) = 1000
• Overflows bucket for 10...
• Raise i to 3.

Analogy: extending a binary prefix

R

0011
1001
1100

0 1

Data
pages
(buckets)

Directory

Analogy: extending a binary prefix

R

0011

1001
1010

0 1

1100

R
0 1

Global
depth

Local
depth

Extendible hash table: lookup

• If directory fits in memory, equality search is answered with
one disk access; else two.

• The directory is growing by doubling. All new entries are
appended to the end of the directory. Thus, by knowing
current global depth, we know exactly where the entry for
the first i bits of h(k) is.

• The range search is not supported: need to scan all the
buckets!

Extendible hashing: problems

• Doubling the directory pages can lead to a very large
directory.

• There are no overflow pages, that means that we are
going to double the directory size until we managed to
fit conflicting entries to different buckets.

• Problem with skewed key distributions.
• E.g. Let 1 block=2 records. Suppose that three records

have hash values, which happen to be the same in the
first 20 bits.

• In that case we would have i=20 and one million bucket-
array entries, even though we have only 3 records!!

Linear Hashing

• Idea: Use a family of hash functions h0, h1, h2, ...

• hi(k) = h(k) mod(2in); n = initial # buckets

• Directory avoided in LH by using overflow pages, and
choosing bucket to split round-robin.

Linear Hashing

• Splitting proceeds in `rounds’.

• The bucket to be split is pointed to by s. At each split, s is
incremented.

• Round ends when all Ni initial (for round i) buckets are split.

• At each point in time, buckets 0 to s-1 have been split, all the
rest is yet to be split.

• When the round ends, s is reset to 0, and a new round begins

• Current round number is i.

• Search: To find bucket for data entry k, find hi(k):

• If hi(k) >= s, k belongs to bucket hi(k).

• Else, apply hi+1(k) to find out the bucket.

Overview of Linear Hashing

In the middle of a round.

ih

Buckets that existed at the

beginning of this round:

this is the range of

s
Bucket to be split

of other buckets) in this round

ih search key value)(

search key value)(

Buckets split in this round:

If

is in this range, must use

h i+1

`split image' bucket.

to decide if entry is in

created (through splitting

`split image' buckets:

Linear Hashing: insertion

• Insert: Find bucket by applying hi or hi+1:

• If bucket to insert into is full:

• Add overflow page and insert data entry.

• (Maybe) Split bucket s and increment s.

• Can choose any criterion to `trigger’ split.

• Since buckets are split round-robin, long overflow chains
don’t develop!

• Doubling of directory in Extendible Hashing is similar;
switching of hash functions is implicit in how the # of bits
examined is increased.

Linear Hashing (LH):
insertion example

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0

1

Initial array of buckets

LH: setup

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0

1

Initial array of buckets M – current number of buckets, initially M = 2
R – max number of data entries in one bucket, R=2
N – total number of data entries, N=0
N/MR – split threshold: if N/MR = 0.75 – split current bucket

s – pointer to the current bucket – to be split next, initially s=0

Family of hash functions – depends on the initial number of
buckets (2 in this example): hi (k) = k mod 2i *2
h0 (k) = k mod 2, h1 (k) = k mod 4, …

Current level i=0

s

Linear hashing: insert 1, 7

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0

1 1 7

M = 2, hash capacity = 4
N = 2
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2

Current level i

As far as N/MR <= 0.75,
insert into the
corresponding bucket

s

Linear hashing: insert 3

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0

1 1 7

M = 2, hash capacity = 4
N = 3
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2

N/MR = 3/4 <= 0.75, so no split yet.
However need an overflow bucket to
store 3.
The space of the overflow buckets is not
used in the calculation of the split
threshold!

3

s

Linear hashing: insert 8

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1 7

M = 2, hash capacity = 4
N = 4
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2

3

Linear hashing: insert 8

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1 7

M = 3, hash capacity = 6
N = 4
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2

N/MR = 4/4 > 0.75 => split current bucket by
adding a new bucket, and rehash keys of bucket s
with the next hashing function h1 (k) = k mod 4.
No key re-distribution needed (8 mod 4 =0, so
remains in bucket 0)

3

2

k mod 4

s

Linear hashing: insert 8

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1 7

M = 3, hash capacity = 6
N = 4
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2

We have split current bucket s.
Advance s to the next bucket of
the current level

3

2

k mod 4

s

Linear hashing: insert 8

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1 7

M = 3, hash capacity = 6
N = 4
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2

Now to find the place for a new key, we first
use k mod 2. If the result is 0 (above the
current position of s), then we use k mod 4.

3

2

s

Linear hashing: insert 12

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8 12

1 1 7

M = 3, hash capacity = 6
N = 5
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2
If the result is < s,
Use h1 (k) = k mod 4

12 mod 2 = 0, 0 < s, use h1= 12 mod 4.
Still belongs to bucket 0.
Check for split threshold:
5/6 > 3/4. We need to split the current
bucket

3

2

s

Linear hashing: insert 12

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8 12

1 1

M = 4, hash capacity = 8
N = 5
i=0
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h0 (k) = k mod 2
If the result is < s,
Use h1 (k) = k mod 4

We add a new bucket, and re-distribute
records from page 1 between 1 and 3, by
applying mod 4.
The overflow page is removed and space is
reclaimed. 5/8 < 3/4

2

3 7 3

s

Linear hashing: insert 12

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8 12

1 1

M = 4, hash capacity = 8
N = 5
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4

Because we have finished splitting of
a current level i, we reset s to the
beginning of a new level i+1.
In the next round, we use mod 4 for
all the new keys.

2

3 7 3

s

Current level

Linear hashing: insert 4

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8 12

1 1

M = 4, hash capacity = 8
N = 6
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4

4 mod 4 hashes to bucket 0, add overflow
bucket.
Check for split threshold: 6/8 <= 3/4
- no split needed

2

3 7 3

s 4

Linear hashing: insert 11

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8 12

1 1

M = 3, hash capacity = 8
N = 7
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4

11 mod 4 hashes to bucket 3, add
overflow bucket.
Check for split threshold: 7/8 > 3/4
- need to split current bucket s

2

3 7 3

s 4

11

Linear hashing: insert 11

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8 12

1 1

M = 5, hash capacity = 10
N = 7
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4

Add a new page.

2

3 7 3

s 4

11

4

Linear hashing: insert 11

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 5, hash capacity = 10
N = 7
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4

Use the next hash function h2 = k mod 8
to redistribute the content of the current
bucket between buckets 0 and 4: 4 and
12 are hashed to a new bucket. The
overflow page is deleted.

2

3 7 3

s

11

4 12 4

Linear hashing: insert 11

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 5, hash capacity = 10
N = 7
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4

Advance s.
Now if a new key hashes to 0 – above s
– then we find its place using mod 8,
otherwise we placing it according to
h1(k) = k mod 4 – the hash function for
the current level i=1

2

3 7 3

s

11

4 12 4

k mod 8

Linear hashing: insert 2

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 5, hash capacity = 10
N = 8
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4
If h1 < 1, use h2 (k) = k mod 8

0.8 > 0.75. We need to split bucket 1.

2 2

3 7 3

s

11

4 12 4

Linear hashing: insert 2

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 6, hash capacity = 12
N = 8
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4
If h1 < 1, use h2 (k) = k mod 8

Add a new bucket. Redistribute content of
bucket 1 between buckets 1 and 5, using the
next-level hash function h2 = k mod 8.
Nothing to re-distribute

2 2

3 7 3

s

11

4 12 4

5

Linear hashing: insert 2

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 6, hash capacity = 12
N = 8
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4
If h1 < 1, use h2 (k) = k mod 8

Advance s. Now if a key hashes to 0 or 1, use
the next level hash function mod 8,
otherwise put according to mod 4.

2 2

3 7 3

s
11

4 12 4

5

Linear hashing: insert 10

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 6, hash capacity = 12
N = 9
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4
If h1 < 1, use h2 (k) = k mod 8

10 mod 4 = 2.
9/12 <= 3/4. No split
needed

2 2 10

3 7 3

s
11

4 12 4

5

Linear hashing: insert 13

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 6, hash capacity = 12
N = 10
i=1
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4
If h1 < 1, use h2 (k) = k mod 8

13 mod 4 = 1. Use 13 mod 8 = 5.
Check for split threshold: 10/12 > 3/4.
Need to split current bucket 2

2 2 10

3 7 3

s
Current level

11

4 12 4

5 13

etc. …

Try to finish this split and insert the next key.

Linear hashing: insert 13

1 7 3 8 12 4 11 2 10 13 5

The sequence of keys to be inserted

0 8

1 1

M = 6, hash capacity = 12
N = 10
Split when N/hash capacity > 3/4

To find where a new record belongs,
use h1 (k) = k mod 4
If h1 < 1, use h2 (k) = k mod 8

Note that bucket 3 still contains a link to
an overflow page, however it will
eventually be split in this round, and the
keys re-distributed among new buckets

2 2 10

3 7 3

s
Current level

11

4 12 4

5 13

Linear hashing: notes

• Full buckets are not necessarily split

• Buckets that are split are not necessarily full

• Every bucket will be split sooner or later in the current round, and
so overflows will be reclaimed and rehashed.

• Split pointer s decides which bucket to split next

• At level i, s is between 0 and 2i

• s is incremented and after reaching 2i is reset to 0. At this point
all the buckets at level i have been split, and s will start a new
round from 0 to 2i+1

• Family of hash functions for each level: hi (k)= h(k) mod (2i*n),
where n is the initial number of buckets

• When level i+1 is reached, the capacity of the hash table at level i
is doubled

Linear hashing: lookup example 1

0 8

1 1

To find a record with key k:

Calculate h1 (k) = k mod 4

If h1 < 2, use h2 (k) = k mod 82 2 10

3 7 3

s
Current level

11

4 12 4

5 13

1. Current level is 1. s= 2.

2. Search for key 5.

3. Compute h1(5) = 5 mod 4 = 1
1 < s, compute h2(5) = 5 mod 8 = 5.
Record with key 5 can be only in bucket 5.

4. Search inside bucket 5 – no such record

Linear hashing: lookup example 2

0 8

1 1

2 2 10

3 7 3

s
Current level

11

4 12 4

5 13

1. Current level is 1. s= 2.

2. Search for key 7.

3. Compute h1(7) = 7 mod 4 = 3
3 > s
Record with key 7 can be only in bucket 3.

4. Search inside bucket 3 – yes!

To find a record with key k:

Calculate h1 (k) = k mod 4

If h1 < 2, use h2 (k) = k mod 8

Exercise (at home)
• Suppose we want to insert keys with hash values: 0000…1111

(0-15) in a linear hash table with 100% split threshold.

• Assume that a block can hold three records.

Summary

• Hash-based indexes: best for equality searches, do not
support range searches.

• Static Hashing can lead to long overflow chains.

• Extendible Hashing avoids overflow pages by splitting a full
bucket when a new data entry is to be added to it.

• Directory to keep track of buckets, doubles periodically.

• Can get large with skewed data*; additional I/O if this
does not fit in main memory.

• Linear Hashing avoids directory by splitting buckets round-
robin, and using overflow pages.

*For hash-based indexes, a skewed data distribution is one in which the hash values of data
entries are not uniformly distributed!

