Lecture 02.07

Some more indexes

By Marina Barsky
Winter 2017, University of Toronto

Multi-dimensional
indexes

Multi-dimensional data

e Databases often store data in more than 1 dimension

* Examples:

* Relation — a collection of k-dimensional points. Each
attribute is a separate dimension.

Customer (age, salary, pcode, maritalstatus, etc.)
Sale (store, day, item, color, size, etc.).
Each sale = point in 5dim space.

* GIS - 2-dimensional representation of objects on the
map.
* Image databases — medical imaging, photographs

Multi-dimensional queries

* Range queries:
Relation: Customer (age, salary, pcode, maritalstatus).

Query: "How many customers for gold jewelry have age between 45
and 55, and salary less than 100K?"

* Nearest neighbor:
GIS — 2-dimensional points representing objects on the map.
Query: "If | am at coordinates (a,b), what is the nearest McDonalds?"

* Content-based queries:
Image databases — medical imaging, photographs
Query: find images similar to a given image

MD range query

“How many customers for gold

jewelry have age between 45 and

55, and salary less than 100K?”

SELECT *

FROM Customers

WHERE age>=45 AND age<=55
AND sal<100;

Salary

Example:
Customers (id, age, salary, spent)
for people who buy gold jewelry.

500K : :
I |
0
I |
I % |
I |
I |
« 1 * o«
I |
220K p—-——7"7"—"—~— ‘If“‘: “““““
Iy *
b *
90K ““““_:__*_: _________
* I* |
I |
0 | |
0 40 55 100
Age
Data:

(25,60) (45,60) (50,75) (50,100)
(50,120) (70,110) (85,140) (30,260)
(25,400) (45,350) (50,275) (60,260)

Sometimes can use secondary
B-trees on Age and Salary

Take intersection of RIDs, produce counts

e
~ L IDs matching
———] salary range

RIDs matchin
age range

NA

[0,100] —1 7

[45,55_]

B-tree index on age B-tree index on salary

Multi-dimensional indexes

* Hash inspired:
e Grid files
e Partitioned hash functions

* Tree-inspired:
* KD-trees
* Quad-trees
e R-trees (Region trees)

Multi-dimensional indexes
in external memory

* Adaptations of all these indexes for disk give up at least one
of the following:
* Correspondence between tree nodes and blocks
* Balance of the tree
* Complexity of dynamic operations (insertions, deletions)

* We are not going to study them in-depth in this course

Bitmap Indexes

example of multi-dimensional indexing

Bitmap Indexes

e Suppose we have n tuples (rows, records)

* A bitmap index for a field F is a collection of bit vectors of

length n, one for each possible value that may appear in the
field F

* The vector for value v has 1 in position i if the i-th record has
vin field F, and it has O there if not

Bitmap index for second column

(30, foo) foo: 100100
(30, bar) bar: 010010
(40, baz) baz: 001001
(50, foo)
(40, bar)

(30, baz)

Example

Two bit
strings for
the Gender
bitmap

Customer table.

We will index Gender
and Rating. Note that
this is just a partial
list of all the records
in the table

Five bit strings
for the Rating
bitmap

2 3 4 5
112 Joe M o lol1 o |o
115 Sam M o lolo |o [1
119 Sue F O |0 |0 |0 |1
112 Wu M O |0 |O |1 |O

Bitmap operations

* Bit maps are designed to support partial match and range queries

* To identify the records holding a subset of the values from a given
dimension, we can do a binary OR on the bitmaps from that
dimension.

 Example: all customers with high ratings: the ORing of bit strings
for Rating = (3, 4, 5)

* To identify the partial matches on a group of dimensions, we can
simply perform a binary AND on the OR-ed maps from each
dimension

* These operations can be done very efficiently since binary
operations are natively supported by the CPU

Query example

Bitmap indexes in Oracle: example

CREATE TABLE property

(
property code NUMBER,
bedrooms NUMBER,
receptions NUMBER,
garages NUMBER

);
CREATE BITMAP INDEX index1 ON property (bedrooms);

CREATE BITMAP INDEX index2 ON property (receptions);
CREATE BITMAP INDEX index3 ON property (garages);

SELECT property_code FROM property
WHERE bedrooms =4

AND receptions =3

AND garages =2

Bitmaps can be combined using the logical operations AND, OR, NOT.
Oracle also implements a MINUS operation internally
A MINUS B is equivalent to A AND NOT B

Gold-Jewelry Data: think about

(25; 60) (45; 60) (50; 75) (50; 100)
(50; 120) (70; 110) (85, 140) (30, 260)
(25; 400) (45; 350) (50; 275) (60; 260)

 How would you create
the bitmap index for age, and

the bitmap index for salary?

e Suppose we want to find the jewelry buyers with an age in
the range 45-55 and a salary in the range 100-200. What do

we do?

How big do these things get?

* Assuming each attribute value fits in a 32-bit
machine word, the bitmap index for an attribute
with value cardinality 32 takes as much space as the

base data column
* Since a B-tree index for a 32-bit attribute often uses
3 or 4 times more space than the base data column,

many users consider attributes with cardinalities
less than 100 to be suitable for using bitmap indices

How big do these things get?

* However, some other users believe: bit map indexes
are good for attributes with cardinalities more than
100

* The compression of binary strings is used for sparse
bit vectors

()

/?@Q

Basic Compression

* Run length encoding is used to encode sequences or runs of
Zeros.

e Say that we have 20 zeros, then a 1, then 30 more zeros,
then another 1.
* Naively, we could encode this as the integer pair <20, 30>
* This would work. But what's the problem?

* On a typical 32-bit machine, an integer uses 32 bits of
storage. So our <20, 30> pair uses 64 bits. The original

string only had 52!

Basic Compression (Cont'd)

* So we must use a technique that stores our run-lengths as
compactly as possible
* Let’s say we have the string 000101
* This is made up of runs with 3 zeros and 1 zero.
* In binary, 3 =11, while 1 is, of course, just 1
* This gives us a compressed representation of 111.

* The problem?
* How do we decompress this?
* We could interpret this as 1-11 or 11-1 or even 1-1-1.

* This would give us three different strings after the
decompression.

Proper RLE encoding

* We want to uniquely encode run of i O’s followed by a 1.
* Letj be the number of bits required to represent i.

* To define a run, we will use two values:
1. The “unary” representation of j

A sequence of j — 1 “1” bits followed by a zero (the
zero signifies the end of the unary string)

The special cases of j=0andj =1 use 00 and 01
respectively.

2. The binary value of i (using next j bits)

Proper RLE encoding: example

Example: 000000000000010000001

Here we have two “0” runs of length 13 and 6

13 can be represented by 4 bits, 6 requires 3 bits
Runl:j—1“1" bits+0+i— 111 0 1101
Run2:j—1“1"bits+0+i—11 0 110

Final compressed string: 11101101110110
Compression rate: (21-14)/21 = 33%

O OO0 oOo 0

Decoding
* Let’s decode 11101101001011
11101101001011 - 13

11101101001011 >0
11101101001011 - 3

Our sequence of run lengths is: 13, 0, 3. What'’s the bitmap?

0000000000000110001

Bitmap indexes: summary

Pros:
1. Bitmaps provide efficient indexing for low cardinality dimensions

2. On sparse, high cardinality dimensions, compression can be
effective

3. Bit operations support multi-dimensional partial match and
range queries

Cons:
1. De-compression requires run-time overhead

2. Bit operations on large maps and with large dimension counts
can be expensive.

3. Maintaining in heavy-update scenarios is expensive, thus they
are widely used on more static databases (data warehouses)

Roadmap

[Handling large amount of data efficiently]

Implementing
Parallel resilience —
dataflow coping with

system failures

Algorithms for
MapReduce

Implementing
relational
operators

Implementing
concurrency

Introduction to
query optimization

