
Some more indexes

Lecture 02.07

By Marina Barsky
Winter 2017, University of Toronto

Multi-dimensional
indexes

Multi-dimensional data

• Databases often store data in more than 1 dimension

• Examples:
• Relation – a collection of k-dimensional points. Each

attribute is a separate dimension.
Customer (age, salary, pcode, maritalstatus, etc.)
Sale (store, day, item, color, size, etc.).

Each sale = point in 5dim space.

• GIS – 2-dimensional representation of objects on the
map.

• Image databases – medical imaging, photographs

Multi-dimensional queries
• Range queries:

Relation: Customer (age, salary, pcode, maritalstatus).

Query: "How many customers for gold jewelry have age between 45
and 55, and salary less than 100K?"

• Nearest neighbor:
GIS – 2-dimensional points representing objects on the map.

Query: "If I am at coordinates (a,b), what is the nearest McDonalds?"

• Content-based queries:
Image databases – medical imaging, photographs

Query: find images similar to a given image

MD range query

“How many customers for gold
jewelry have age between 45 and
55, and salary less than 100K?”

SELECT *

FROM Customers

WHERE age>=45 AND age<=55

AND sal<100;
Data:

(25,60) (45,60) (50,75) (50,100)

(50,120) (70,110) (85,140) (30,260)

(25,400) (45,350) (50,275) (60,260)

Example:

Customers (id, age, salary, spent)

for people who buy gold jewelry.

Sometimes can use secondary
B-trees on Age and Salary

B-tree index on age B-tree index on salary

[45,55]
[0,100]

RIDs matching
age range

RIDs matching
salary range

Take intersection of RIDs, produce counts

Multi-dimensional indexes

• Hash inspired:

• Grid files

• Partitioned hash functions

• Tree-inspired:

• KD-trees

• Quad-trees

• R-trees (Region trees)

Multi-dimensional indexes
in external memory
• Adaptations of all these indexes for disk give up at least one

of the following:

• Correspondence between tree nodes and blocks

• Balance of the tree

• Complexity of dynamic operations (insertions, deletions)

• We are not going to study them in-depth in this course

Bitmap Indexes
example of multi-dimensional indexing

Bitmap Indexes

• Suppose we have n tuples (rows, records)

• A bitmap index for a field F is a collection of bit vectors of
length n, one for each possible value that may appear in the
field F

• The vector for value v has 1 in position i if the i-th record has
v in field F, and it has 0 there if not

(30, foo)

(30, bar)

(40, baz)

(50, foo)

(40, bar)

(30, baz)

foo: 100100

bar: 010010

baz: 001001

Bitmap index for second column

Example

M F

1 0

1 0

0 1

1 0

Custid Name Gender Rating

112 Joe M 3

115 Sam M 5

119 Sue F 5

112 Wu M 4

1 2 3 4 5

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

Two bit
strings for
the Gender
bitmap

Customer table.
We will index Gender
and Rating. Note that
this is just a partial
list of all the records
in the table Five bit strings

for the Rating
bitmap

Bitmap operations

• Bit maps are designed to support partial match and range queries

• To identify the records holding a subset of the values from a given
dimension, we can do a binary OR on the bitmaps from that
dimension.

• Example: all customers with high ratings: the ORing of bit strings
for Rating = (3, 4, 5)

• To identify the partial matches on a group of dimensions, we can
simply perform a binary AND on the OR-ed maps from each
dimension

• These operations can be done very efficiently since binary
operations are natively supported by the CPU

Query example
M F

1 0

1 0

0 1

1 0

1 2 3 4 5

0 0 1 0 0

0 0 0 0 1

0 0 0 0 1

0 0 0 1 0

SELECT *

FROM Customer

WHERE gender = M AND

(rating = 3 OR rating = 5)

1

1

1

0

1

0

1

1
AND =

1

0

1

0
First two records

in our table

are retrieved

1

1

1

0

1

0

0

0

0

0

1

1
OR =

1

0

1

1

Bitmap indexes in Oracle: example

CREATE TABLE property

(

property_code NUMBER,

bedrooms NUMBER,

receptions NUMBER,

garages NUMBER

);

CREATE BITMAP INDEX index1 ON property (bedrooms);

CREATE BITMAP INDEX index2 ON property (receptions);

CREATE BITMAP INDEX index3 ON property (garages);

SELECT property_code FROM property

WHERE bedrooms = 4

AND receptions = 3

AND garages = 2

Bitmaps can be combined using the logical operations AND, OR , NOT.
Oracle also implements a MINUS operation internally

A MINUS B is equivalent to A AND NOT B

Gold-Jewelry Data: think about

(25; 60) (45; 60) (50; 75) (50; 100)

(50; 120) (70; 110) (85; 140) (30; 260)

(25; 400) (45; 350) (50; 275) (60; 260)

• How would you create

the bitmap index for age, and

the bitmap index for salary?

• Suppose we want to find the jewelry buyers with an age in
the range 45-55 and a salary in the range 100-200. What do
we do?

How big do these things get?

• Assuming each attribute value fits in a 32-bit

machine word, the bitmap index for an attribute

with value cardinality 32 takes as much space as the

base data column

• Since a B-tree index for a 32-bit attribute often uses

3 or 4 times more space than the base data column,

many users consider attributes with cardinalities

less than 100 to be suitable for using bitmap indices

How big do these things get?

• However, some other users believe: bit map indexes

are good for attributes with cardinalities more than

100

• The compression of binary strings is used for sparse

bit vectors

Basic Compression

• Run length encoding is used to encode sequences or runs of
zeros.

• Say that we have 20 zeros, then a 1, then 30 more zeros,
then another 1.

• Naively, we could encode this as the integer pair <20, 30>

• This would work. But what's the problem?

• On a typical 32-bit machine, an integer uses 32 bits of
storage. So our <20, 30> pair uses 64 bits. The original
string only had 52!

Basic Compression (Cont'd)

• So we must use a technique that stores our run-lengths as
compactly as possible

• Let’s say we have the string 000101

• This is made up of runs with 3 zeros and 1 zero.

• In binary, 3 = 11, while 1 is, of course, just 1

• This gives us a compressed representation of 111.

• The problem?

• How do we decompress this?

• We could interpret this as 1-11 or 11-1 or even 1-1-1.

• This would give us three different strings after the
decompression.

Proper RLE encoding

• We want to uniquely encode run of i 0’s followed by a 1.

• Let j be the number of bits required to represent i.

• To define a run, we will use two values:
1. The “unary” representation of j

A sequence of j – 1 “1” bits followed by a zero (the
zero signifies the end of the unary string)
The special cases of j = 0 and j = 1 use 00 and 01
respectively.

2. The binary value of i (using next j bits)

Proper RLE encoding: example

 Here we have two “0” runs of length 13 and 6

 13 can be represented by 4 bits, 6 requires 3 bits

 Run 1: j – 1 “1” bits + 0 + i → 111 0 1101

 Run 2: j – 1 “1” bits + 0 + i → 11 0 110

 Final compressed string: 11101101110110

 Compression rate: (21-14)/21 = 33%

Example: 000000000000010000001

Decoding

• Let’s decode 11101101001011

11101101001011  13

11101101001011  0

11101101001011  3

Our sequence of run lengths is: 13, 0, 3. What’s the bitmap?

0000000000000110001

Bitmap indexes: summary

Pros:

1. Bitmaps provide efficient indexing for low cardinality dimensions

2. On sparse, high cardinality dimensions, compression can be

effective

3. Bit operations support multi-dimensional partial match and

range queries

Cons:

1. De-compression requires run-time overhead

2. Bit operations on large maps and with large dimension counts

can be expensive.

3. Maintaining in heavy-update scenarios is expensive, thus they

are widely used on more static databases (data warehouses)

Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

