
Map-Reduce

Lecture 04.01

By Marina Barsky
Winter 2017, University of Toronto

Single Node Architecture

Memory

Disk

CPU

“Classical” Data Processing

We know how to do it efficiently

B 𝑅 +
𝐵 𝑅

𝑀 − 1
𝐵(𝑆)

3 ∗ B 𝑅 + 3 ∗ 𝐵(𝑆)

3 ∗ B 𝑅 + 3 ∗ 𝐵(𝑆)

Block Nested Loop Join – single pass

if min(B(R), B(S)) <= M-1

Sort-Merge Join – 3 passes

if B(R) + B(S) < M2

Hash Join – 3 passes
if min (B(R), B(S)) < M2

What if inputs are much-much larger?

What does scalable mean:
operationally

In the past:

• Out-of-core – large parts of inputs and outputs are on
disk

• External-memory algorithms

• Small memory footprint

• Data is brought in chunks to main memory and the
results are written to a local disk

• You have a guarantee that the algorithm will terminate

“Works even if data does not fit in
main memory on a single machine”

What does scalable mean:
operationally

Now:

• Started from 2000s – no matter how big your server
was, you were not able to bring data fast enough to
memory from disk

• Use 1000s computers and apply them all to the same
problem

“Can make use of 1000s
cheap computers”

Scale out (parallelize) vs. scale up (adding more memory)

What does scalable mean:
algorithmically

In the past:

• O(Nm) - Polynomial-time algorithm → tractable →
scalable

• O(mN) - Exponential → not scalable →not for big inputs,
processing time increases too fast

if you have N data items, you
perform no more than Nm

operations

What does scalable mean:
algorithmically

Now:

• Polynomial-time algorithms must be parallelizable

if you have N data items, you
perform no more than Nm/K
operations for some large K

What does scalable mean:
algorithmically

Future:

• Data is streaming (Large Synoptic Survey telescope – 30
TB/night)

• You have no more than one pass over the data (N) –
make this pass count

• Insert data into some sort of compressed index (log N)

if you have N data items, you
perform no more than N log N

operations

You call an algorithm scalable

• In the past: polynomial-time algorithms

• Now: parallel polynomial-time algorithms

• In the future: streaming algorithms

Motivation: Google Example

• 20+ billion web pages x 20KB = 400+ TB

• 1 computer reads 30-35 MB/sec from disk

~4 months to just read the web!

• ~1,000 hard drives to store the web

• Takes even more to do something useful
with the data!

• A standard architecture for such problems:

• Cluster of commodity Linux nodes

• Commodity network (Ethernet) to connect them

Scalability of parallel architectures

D. J. DeWitt, J. Gray, "Parallel Database Systems: the Future of High Performance
Database Systems", ACM Communications, vol. 35(6), 85-98, June 1992.

…

Logical multi-processor database designs

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory

Scalability of parallel architectures

…

Logical multi-processor database designs

interconnect

…

interconnect

interconnect

Shared nothing Shared disk

…

=disk =memory =processor

Shared memory

Only shared nothing architecture truly scales, others reach the
bottleneck of accessing the same data by multiple processors

Cluster Architecture

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Each rack contains 16-64 nodes

Mem

Disk

CPU

Mem

Disk

CPU

…

Switch

Switch1 Gbps between
any pair of nodes
in a rack

2-10 Gbps backbone between racks

In 2011 it was estimated that Google had 1M machines, http://bit.ly/Shh0RO

http://bit.ly/Shh0RO

Processing (really) big inputs

• Scalability of algorithms

• Inherently parallelizable tasks

• Distributed file system

• Map-reduce computation

• Practice

Example 1: find matching DNA
sequences

• Given a set of short sequences:

• Find all sequences equal to GATTACGATATTA

Search algorithm I

GATTACGATATTA

TA
A

A
A

A
A

AT
AT

TA

G
AT

TA
C

G
AT

AT
TA

Search algorithm I

GATTACGATATTA

G
AT

TA
C

G
AT

AT
TA

Step 20: found

TA
A

A
A

A
A

AT
AT

TA

Search algorithm I

GATTACGATATTA

G
AT

TA
C

G
AT

AT
TA

N = 40 records → 40 comparisons
O(N) algorithm

TA
A

A
A

A
A

AT
AT

TA

Search algorithm I

GATTACGATATTA

G
AT

TA
C

G
AT

AT
TA

N = 40 records → 40 comparisons
O(N) algorithm

TA
A

A
A

A
A

AT
AT

TA

Can we do any better?

Search algorithm II GATTACGATATTA

AAAATCCTGCA

AAACGCCTGCA

GATTACGATATTA
TTTTCCCTGCA

TTTACGCCTGC

What if we pre-sort the sequences?

Search algorithm II GATTACGATATTA

AAAATCCTGCA

Binary search: log N time

AAACGCCTGCA

GATTACGATATTA
TTTTCCCTGCA

TTTACGCCTGC

Far better scalability !

Old-style scalability:
implemented by DBMS

• Databases are proficient at “Needle in Haystack” problems –
extracting small results from big datasets

• Guarantee that your query will always finish, regardless of
dataset size

• Indexes are easily built and automatically used when
appropriate

• You can take advantage of log N search without
implementing index yourself. Most of the algorithmic work
is done for you.

CREATE INDEX seq_idx ON sequences (seq)

SELECT seq FROM sequences
WHERE seq = ‘GATTACGATATTA’

Example 2: read trimming

• Given a set of DNA reads – sequences of 100 characters
long:

• Trim the final t (bp) characters of each sequence*

• Generate a new dataset of trimmed sequences

*The accuracy of sequencer drops abruptly after a certain length

Trim algorithm I

• Time 0: TAAAAAAATATTA → TAAAAA

TA
A

A
A

A
A

AT
AT

TA

Trim algorithm I

• Time 1: CACCTAAATATTA → CACCTA

C
A

C
C

TA
A

AT
AT

TA

Trim algorithm I

• The task is fundamentally linear in N: we have to touch every record no
matter what

Can we do any better?

Will an index help?

Trim algorithm II

• We can break data into K pieces

• Assign each sub-task to a different machine

• Process each piece in parallel

• All work is finished in time N/K

Schema of parallel “read trimming” task

Input: short
sequences

f f f f f

Distribute
among K
computers

Perform
trimming on
every read

A big
distributed set
of trimmed
reads

Converting tiff images to png

Tiff images

f f f f f

Distribute
among K
computers

Perform
conversion of
every file

A big
distributed set
of png images

https://aws.amazon.com/blogs/aws/new-york-times/

Simulations with multiple parameters
Sets of
parameters
for multiple
short
simulations

f f f f f

Distribute the
parameter set
among K
computers

Run simulations
with given
parameters

A big
distributed set
of simulation
results

https://www.sciencedaily.com/releases/2013/07/130712102844.htm

Compute word frequency of each
word in a set of documents

(people, 2)
(government, 6)
(assume, 1)
(history, 2)
…

Single document processing example

Word frequencies

Millions of
documents

f f f f f

Distribute
documents
among K
computers

For each document
f returns (word,
frequency) pairs

A big
distributed list
of word
histograms per
document

There is a pattern here …

• A function that maps a read to a trimmed read

• A function that maps tiff image to png image

• A function that maps a set of parameters to a simulation
results

• A function that maps a document to a histogram of word
frequencies

The idea is to abstract the farming of parallel programs
into a general framework, where the programmer only
needs to provide the mapping function itself

Different task:
Compute word frequencies for
all documents

(people, 78)
(government, 123)
(assume, 23)
(history, 38)
…

Word frequencies among all
documents

Millions of
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pairs

A big
distributed list
of word
histograms per
document? But we don’t want distributed little histograms,

we want one big histogram

Word frequencies among all
documents

Millions of
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pairs

A big
distributed list
of word
histograms per
documentWe want that a single computer has access to

all occurrences of a given word

Word frequencies among all
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pair

A big
distributed list
of word
histograms per
document

Send each
frequency pair into
computer i using
h(word) % K

Word frequencies among all
documents

map map map map map

Distribute
documents
among K
computers

For each
document map
returns (word,
frequency) pair

A big
distributed list
of word
histograms per
document

Now each
computer can
produce (word,
frequency) pair for
all documents

reduce reduce reduce reduce

5 3 5

Word frequencies among all
documents

map map map map map

Distribute
documents
among K
computers

For each
document f
returns (word,
frequency) pair

A big
distributed list
of word
histograms per
document

We have a
distributed total
histogram

reduce reduce reduce reduce

5 3 5

General idea: partitioning by
hashing

Map

Reduce

Shuffle

Only map and reduce differ from one application to another
Everything else is generic and is implemented in a map-
reduce framework

Map-reduce

• The user writes two functions: map and reduce

• A master controller divides the input data into chunks, and
assigns different processors to execute the map function on
each chunk

• Other processors, perhaps the same ones, are then assigned
to perform the reduce function on chunks of the output
from the map function

Map-reduce framework

MAP

SHUFFLE REDUCE

User
Program

Master
Node

Worker

Worker

Worker

Worker

Worker

Input

fork fork
fork

Assign
map

Assign
reduce

Intermediate
files

Output

Map-reduce pinciples

• Storage Infrastructure – Distributed File System

• Input is stored in chunks of ~64 MB on compute nodes, only
master node knows where

• Google: GFS. Hadoop: HDFS

• Programming model – Map-Reduce

• Sequentially read a lot of data

• Extract something you care about

• Group by key: send to reducer

• Data model

• Input: a bag of (input key, value) pairs

• Output: a bag of (output key, value) pairs

Processing (really) big inputs

• Scalability of algorithms

• Inherently parallelizable tasks

• Distributed file system

• Map-reduce computation

• Practice

Distributed File System

• Chunk servers
• File is split into contiguous chunks
• Typically each chunk is 16-64MB
• Each chunk replicated (usually 2x or 3x)
• Try to keep replicas in different racks

• Master node (Name Node in Hadoop’s HDFS)
• Stores metadata about where files are stored
• Might be replicated

• Client library for file access
• Talks to master to find chunk servers
• Connects directly to chunk servers to access data

• Works best for static files
• Files are rarely updated
• Can only grow in size by appending new data to the end

Reliable distributed file system

• Data kept in “chunks” spread across machines

• Each chunk replicated on different machines

• Seamless recovery from disk or machine failure

C0 C1

C2C5

Chunk server 1

D1

C5

Chunk server 3

C1

C3C5

Chunk server 2

…
C2D0

D0

Bring computation directly to the data!

C0 C5

Chunk server N

C2
D0

Chunk servers also serve as compute servers

Processing (really) big inputs

• Scalability of algorithms

• Inherently parallelizable tasks

• Distributed file system

• Map-reduce computation

• Practice

Map

• The input is in chunks on different nodes

• Map function is forked to the same chunk server where the
data is

• The output of map function is partitioned by hashing the
output key: h(key) % R, where R is the number of reducers

• The partitioned output is written to the same local disk on
a computing node where the input is

Shuffle

• The system then performs shuffling of the intermediate
(key, value) pairs and sends the data to a corresponding
reduce node, according to hash(key). All data with the same
key ends up on the same machine

• Creates Master file to store info about the locations of
chunks for final output, which will also be distributed across
chunk servers

• Already at the reducer: produces aggregated lists of values
for each key

Reduce

• Each node to which a reduce tasks has been assigned takes
one key at a time, and performs required operations on the
corresponding list of values

• The final output is written to a local disk of a reducer, and
the Master node is notified about where chunks of data
reside

• The output of a map-reduce program is a distributed file

Example: what does it do?

map (input_key, input_value)

for each word w in input_value

emit_intermediate (w, 1)

reduce (intermediate_key, Iterator intermediate_values)

result: =0

for each v in intermediate_values

result += v

emit (intermediate_key , result)

Word count in Python
def mapper (record):

key: document identifier

value: document contents

key = record[0]

value = record[1]

words = value.split()

for w in words:

mr.emit_intermediate(w, 1)

def reducer (key, list_of_values):

key: word

value: list of occurrence counts

total = 0

for v in list_of_values:

total += v

mr.emit((key, total))

To run:

mr = MapReduce.MapReduce()

inputdata = open(sys.argv[1])

mr.execute(inputdata, mapper,

reducer)

In Java: https://hadoop.apache.org/docs/r1.2.1/mapred_tutorial.html#Source+Code

Example: word count

map (input_key, input_value)

for each word w in input_value

emit_intermediate (w, 1)

reduce (intermediate_key, Iterator intermediate_values)

result: =0

for each v in intermediate_values

result += v

emit (intermediate_key , result)

Without changing the reduce function,
improve performance of this algorithm

Refinement: Combiners

• Often a map task will produce many pairs of the form
(k,v1), (k,v2), … for the same key k
• E.g., popular words in the word count example

• Can save network time by pre-aggregating values in
the mapper:
• Combine (k, list(v1))  (k, v2)

• Works only if reduce function is commutative and
associative

Refinement: Combiners

• Back to our word counting example:
• Combiner combines the values of all keys of a single

mapper (single machine):

Much less data needs to be copied and shuffled!

Coordination: Master

• Master node takes care of coordination:

• Task status: (idle, in-progress, completed)

• Idle tasks get scheduled as workers become available

• When a map task completes, it sends to the master the
location and sizes of its R intermediate files, one for
each reducer

• Master pushes this info to reducers

• Master pings workers periodically to detect failures

How many Map and Reduce jobs?

• M map tasks, R reduce tasks

• Rule of thumb:

• Make M much larger than the number of nodes in the
cluster

• One DFS chunk per map is common

• Improves dynamic load balancing and speeds up
recovery from worker failures

• Usually R is smaller than M

• Because output is spread across R files

Map-reduce solves the following
issues:
1: Copying data over a network takes time

• Idea:
• Bring computation close to the data. The file chunks are distributed across

nodes and map programs are forked to the same machine – program comes to
data

2: Machines fail
• One server may stay up to 3 years (1,000 days)

• If you have 1,000 servers, expect to loose 1/day

• Google had ~1M machines in 2011: 1,000 machines fail every day!

• Idea:
• Store files multiple times for reliability. Each file chunk is replicated in at least 3

nodes

3: Parallel programming is difficult
• Programmer only needs to provide map and reduce functions which fit the

problem. Everything else – distribution, hashing, load balancing – is handled by
the system

