
Map-Reduce
Algorithms

Lecture 04.02

By Marina Barsky
Winter 2017, University of Toronto

Example 1: Language Model

• Statistical machine translation:

• Need to count number of times every 5-word sequence
occurs in a large corpus of documents

• Very easy with MapReduce:

• Map:

• Extract (5-word sequence, count) from document

• Reduce:

• Combine the counts

Example 2. Integers

• Design MapReduce algorithms to take a very large file of
integers and produce as output:

(a) The largest integer.

(c) The same set of integers, but with each integer appearing
only once.

(d) The count of the number of distinct integers in the input.

Max integer
map (file_id, Iterator numbers)

max_local: = MIN_INTEGER

for each number n in numbers

if (n > max_local)

max_local: = n

emit_intermediate (“max”, max_local)

reduce (single_key, Iterator all_maxes)

max_total: = MIN_INTEGER

for each number n in all_maxes

if (n > max_total)

max_total : = n

emit (“max_total” , max_total)

Example 3: Inverted index

• Each document has a unique document ID

• Forward index:

• Given doc ID – retrieve document content

• Inverted index:

• From document content to document ID

• Similar (to secondary indexes) idea from information -
retrieval community, but:

• Record document.

• Search key presence of a word in a document.

Inverted index for tweeter

• Input:

• (tweet1, “I love pancakes for breakfast”)

• (tweet2, “I dislike pancakes”)

• (tweet3, “What should I eat for breakfast?”)

• (tweet4, “I love to eat”)

• Output:

• (“pancakes”, [twet1, tweet2])

• (“breakfast”, [tweet1, tweet3])

• (“eat”, [tweet3, tweet4])

• (“love”, [tweet1, tweet4])

Inverted index

map (input_key, input_value)

for each line in input_value

tokens: = split (line)

tweet_id: = tokens[0]

tweet_body: = tokens[1]

for each word in tweet_body

emit_intermediate (word, tweet_id)

reduce (word, Iterator tweet_ids)

Input: distributed file with lines
(tweet_id, tweet_body)

Reduce is empty

Example 4: social network analysis

• Input:

Jim, Sue

Jim, Linn

Linn, Joe

Joe, Linn

Kai, Jim

Jim, Kai

• Output 1
Following
(count):

• Jim, 3

• Sue, 0

• Linn, 1

• Joe, 1

• Kai, 1

• Output 2
Followers
(count):

• Jim, 1

• Sue, 1

• Linn, 2

• Joe, 1

• Kai, 1

• Output 3
Friends
(count):

• Jim, 1

• Sue, 0

• Linn, 1

• Joe, 1

• Kai, 1

Followers: list of followers for
each user
map (file_name, edges)

for each edge in edges

emit_intermediate (edge[1], edge[0])

reduce (user_id, Iterator followers)

Example 5: Set projection S=πa1..an(R)

• The map function:

For each tuple t in R, construct a tuple t′ by eliminating from t those
components whose attributes are not in S. Output the key-value
pair (t′, t′).

• The reduce function:

For each key t′ produced by any of the map tasks, there will be one
or more key-value pairs (t′, t′). Reduce to:

(t′, [t′, t′, . . . ,t′]) -> (t′, t’)

• The duplicate elimination is associative and commutative, so a
combiner associated with each map task can eliminate whatever
duplicates are produced locally.

• However, the reduce tasks are still needed to eliminate two
identical tuples coming from different map tasks.

Duplicate elimination
map (file_id, Iterator numbers)

for each number n in numbers

emit_intermediate (n, 1)

reduce (unique_number, Iterator all_occurrences)

emit (unique_number , unique_number)

Example 6: Join

• Task: compute natural join R(a,b) ⋈ S(b,c)

• Use a hash function h from b-values to 1...R

• A Map process turns:

• Each input tuple R(a,b) into key-value pair (b,(a,R))

• Each input tuple S(b,c) into (b,(c,S))

• Map processes send each key-value pair with key b to Reduce
process h(b)

• Each Reduce process matches all the pairs (b,(a,R)) with all
(b,(c,S)) and outputs (a,b,c).

Join: step-by-step

SIN Department

111111 Accounting

111111 Sales

333333 Marketing

Name SIN

Mary 111111

John 333333

Employee AssignedDepartment

Name SIN Department

Mary 111111 Accounting

Mary 111111 Sales

John 333333 Marketing

Employee ⋈ AssignedDepartment

Join in map reduce: before map

• Join is a binary operation, map reduce is unary (takes a single dataset as
input)

• Idea: treat all the tuples together as a single dataset

• Single dataset tuples:

(111111, ‘Employee’, ‘Mary’)

(333333, ‘Employee’, ‘John’)

(111111, ‘AssignDepartment’, ‘Accounting’)

(111111, ‘AssignDepartment’, ‘Sales’)

(333333, ‘AssignDepartment’, ‘Marketing’)

SIN Department

111111 Accounting

111111 Sales

333333 Marketing

Name SIN

Mary 111111

John 333333

Employee AssignedDepartment

Name SIN Department

Mary 111111 Accounting

Mary 111111 Sales

John 333333 Marketing

Employee ⋈ AssignedDepartment

Additional label to
specify relation name

Join in map reduce: map

(111111, Employee, Mary)

(333333, Employee, John)

(111111, AssignDepartment, Accounting)

(111111, AssignDepartment, Sales)

(333333, AssignDepartment, Marketing)

• For each record in tuples emit key-value pairs
(111111, (111111, Employee, Mary))
(333333, (333333, Employee, John))
(111111, (111111, AssignDepartment, Accounting))
(111111, (111111, AssignDepartment, Sales))
(333333, (333333, AssignDepartment, Marketing))

Why do we use SIN as a key?

Join in map reduce: magic shuffle
phase

• Everything with the same key is lumped together on a single
reducer

(111111, [(111111, Employee, Mary), (111111,
AssignDepartment, Accounting), (111111, AssignDepartment,
Sales)])

(333333, [(333333, Employee, John), (333333,
AssignDepartment, Marketing)]

Join in map reduce: reduce

(111111, [(111111, Employee, Mary), (111111,
AssignDepartment, Accounting), (111111, AssignDepartment,
Sales)])

(333333, [(333333, Employee, John), (333333,
AssignDepartment, Marketing)]

• Applies reduce to a single key-value pair

• Will produce join between values from different relations
for a single key

• Locally, inside each key-list pair – full cross-product

Join in map reduce
map (relation_name, (join_attr_name, relation))

for each tuple t in relation

emit_intermediate (t[join_attr_name], (relation_name, t))

reduce (join_attr_val, Iterator tuples_to_join)

emp_tuples: = []

dept_tuples: = []

for each v in tuples_to_join

if (v [0] = “Employee”)

emp_tuples += v[1]

else

dept_tuples += v[1]

for each e in emp_tuples

for each d in dept_tuples

emit (join_attr_val , (e,d))

Example 7: PageRank and matrix-
vector multiplication

• Originally, map-reduce was designed for fast computation of
web page ranks using PageRank algorithm

How to rank web pages

It seems that:

• a problem is the self-referential nature of this definition

• if we follow this line of reasoning, we might find that the
importance of a web page depends on itself!

Definition: A webpage is important
if many important pages link to it.

Modeling the web

B

C

D

B

C

D

What can we speculate about the relative
importance of pages in each of these graphs,
solely from the structure of the links (which is
anyways the only information at hand)?

Model: traffic and mindless
surfing

• Assumptions:

• The WEB site is important if it gets a lot of traffic.

• Let assume that everyone is surfing spending a second
on each page and then randomly following one of the
available links to a new page.

• In this scheme it is convenient to make sure a surfer
cannot get stuck, so we make the following

STANDING ASSUMPTION: Each page has at least one
outgoing link.

Stable traffic example

• We start with 10 surfers at each page

• At the first random click, 5 of the surfers at page A, say, go to
page B, and the other 5 go to page C. So while each site sees
all 10 of its visitors leave, it gets 5 + 5 incoming visitors to
replace them:

• So the amount of traffic at each page remains constant at 10.

B

A

C

10

10

10

10

10

10

5

5

5

5

5 5

Unstable traffic example

• We start with 10 surfers in each page

• After the first random click, 10 of the surfers at page A go to
page B, since there is only 1 outgoing link from A etc…

B

A

C

10

10

10

10

15

5

5

5

10

10

Unstable traffic example contd.

• After the two next iterations it becomes

• Where is this leading? Do we ever reach a stable configuration,

as in the first graph?

10

15

5

5

5

5

15

15

10

5

7.5

7.5

5

10

10

12.5

7.5

Traffic converges

• While the answer is no, it turns out that the process converges to
the following distribution, which you can check oscillates around
these values going forward in time

• This stable distribution is what the PageRank algorithm (in its
most basic form) uses to assign a rank to each page: The two
pages with 12 visitors are equally important, and each more
important than the remaining page having 6 visitors.

12

12

6

Question

• How do we qualitatively explain why two of the pages in this
model should be ranked equally, even though one has more
incoming links than the other?

12

12

6

B

A

C

How to compute the stable
distribution?

B

A

C

1/2

1/2

1

1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Table of transitions:

transition matrix based on outgoing

links

Links
from:

Set initial importance for all pages
to 1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

B

A

C
Transition matrix

Vector of importance

A 1

B 1

C 1

Iteration 1

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1

B 1

C 1

A 1*1/2 + 1*1 =1.5

B 1*1 = 1

C 1*1/2 = 1/2

New Vector of importance

From B From C

Find new importance based
on number of incoming
visitors and their rank

Iteration 2

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1.5

B 1

C 0.5

A 1*1/2 + 0.5*1 =1

B 1.5*1 = 1.5

C 1*1/2 = 1/2

New Vector of importance

From B From C

Find new importance based
on number of incoming
visitors and their rank

Iteration 3

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

Transition matrix

Current Vector of importance

A 1

B 1.5

C 0.5 A 1.5*1/2 + 0.5*1 =1.25

B 1*1 = 1

C 1.5*1/2 = 0.75

New Vector of importance

From B From C

Each entry of the vector is
updated based on updated entries
for other pages – they get
updated together

Matrix-vector multiplication

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

A - Transition matrix

V k-1 - Current Vector of importance

A 1

B 1.5

C 0.5

A 1.5*1/2 + 0.5*1 =1.25

B 1*1 = 1

C 1.5*1/2 = 0.75

Vk - New Vector of importance

From B From C

The new vector at each iteration is
the result of matrix-vector
multiplication:
Vk = A *Vk-1

Computing matrix-vector
multiplication

• Each entry of a new vector y is

𝑦𝑖 =

𝑗=1…𝑛

𝑎𝑖𝑗 ∗ 𝑥𝑗

• In other words, it is a dot product of vector x with the corresponding
row of matrix A

Note that the matrix is very sparse: each page has a limited number of
outgoing and incoming links compared to the total number of web
pages. So we are up to compute several rounds of multiplication of a
very sparse matrix by a very large vector

Basic matrix-vector multiplication
in map-reduce: input

• Transition matrix (sparse), stored as tuples of type:

(i, j ,Aij)

• Current vector of page importance, stored as tuples of type

(i, vi)

Basic matrix-vector multiplication
in map-reduce: map

map

for each tuple of type A emit_intermediate (i, (i,j,Aij))

for each tuple of type v

for j from 1 to n

emit_intermediate (j, (i, vi))

Input: two types of tuples
(i, j ,Aij)
(i, vi)

Step-by-step example: input

• Tuples of type A:

(1,2,1/2)

(1,3,1)

(2,1,1)

(3,2,1/2)

• Tuples of type v:

(1,1)

(2,1)

(3,1)

A B C

A 0 1/2 1

B 1 0 0

C 0 1/2 0

A 1

B 1

C 1

Step-by-step example: output of
map • Output of type A:

(1, (1,2,1/2))

(1, (1,3,1))

(2, (2,1,1))

(3, (3,2,1/2))

• Output of type v:

(1, (1,1))

(2, (1,1))

(3, (1,1))

(1, (2,1))

(2, (2,1))

(3, (2,1))

(1, (3,1))

(2, (3,1))

(3, (3,1))

• Tuples of type A:

(1,2,1/2)

(1,3,1)

(2,1,1)

(3,2,1/2)

• Tuples of type v:

(1,1)

(2,1)

(3,1)

row col val

row val

Step-by-step example: after shuffle

• At each reducer:

• (1, [(1,2,1/2), (1,3,1), (1,1), (2,1), (3,1)])

• (2, [(2,1,1), (1,1), (2,1), (3,1)])

• (3, [(3,2,1/2), (1,1), (2,1), (3,1)])

• Output of type A:

(1, (1,2,1/2))

(1, (1,3,1))

(2, (2,1,1))

(3, (3,2,1/2))

• Output of type v:

(1, (1,1))

(2, (1,1))

(3, (1,1))

(1, (2,1))

(2, (2,1))

(3, (2,1))

(1, (3,1))

(2, (3,1))

(3, (3,1))

Step-by-step example: reduce

• At each reducer:

• (1, [(1,2,1/2), (1,3,1), (1,1), (2,1), (3,1)])

• (2, [(2,1,1), (1,1), (2,1), (3,1)])

• (3, [(3,2,1/2), (1,1), (2,1), (3,1)])

Multiply non-zero entries of row 1 of A by
values of v, sum them up and emit result
(1, ½+1)

Basic matrix-vector multiplication
in map-reduce: reduce

• The Reduce function simply sums all the values associated
with a given row i. The result will be a pair (i, new vi).

We have a distributed file of new
entries of v: finished one iteration
of PageRank algorithm

Basic matrix-vector multiplication:
limitations

• It seems that the vector of current ranks (which can be very
large) is required by all reducers. This may lead to a very
costly network traffic

• To overcome this, we can partition vector v and matrix A,
and process each partition on a separate reducer, but we
may require more iterations of map-reduce

Partitioned Matrix-Vector
multiplication: main idea

• Partition matrix into strips, partition vector into chunks

• Entries i…j of vector v are multiplied only by columns i…j of matrix A

• We can perform these partial multiplications as an additional
intermediate step of map-reduce, and sum the results in the final step

• The flexibility of map-reduce is that at each step both input and output
are a set of key-value pairs

𝑝𝑎𝑟𝑡 1 = σ𝑗=1…2 𝑎𝑖𝑗∗ 𝑣𝑗

𝑦1 =

𝑗=1…𝑘

𝑝𝑎𝑟𝑡 𝑘

Cost Measures for Algorithms

In MapReduce we quantify the cost of an algorithm using

1. Communication cost = total I/O of all processes

2. Elapsed communication cost = max of I/O along any path

3. (Elapsed) computation cost analogous, but count only
max running time of a single process

Note that here the big-O notation is not the most useful

(adding more machines is always an option)

Example: Cost Measures

• For a map-reduce algorithm:

• Communication cost = input file size + 2 (sum of the
sizes of all files passed from Map processes to Reduce
processes) + the sum of the output sizes of the Reduce
processes.

• Elapsed communication cost is the sum of the largest
input + output for any map process, plus the same for
any reduce process

What Cost Measures Mean

• Either the I/O (communication) or processing (computation)
cost dominates

• Ignore one or the other

• Total cost tells what you pay in rent from
your friendly neighborhood cloud

• Elapsed cost is wall-clock time using parallelism

Implementations

• Google

• Not available outside Google

• Hadoop

• An open-source implementation in Java

• Uses HDFS for stable storage

• Download: http://lucene.apache.org/hadoop/

• Aster Data

• Cluster-optimized SQL Database that also implements
MapReduce

http://lucene.apache.org/hadoop/

Summary

• Learned how to scale out processing of large inputs

• Map-reduce framework allows to implement only 2

functions and the system takes care of distributing

computations across multiple machines

• Memory footprint is small. Need to care about the size of

intermediate outputs – sending them across network may

dominate the cost

• We can perform relational operations in map reduce, if the

relations are too big to be processed on a single machine

Map-reduce vs. RDBMS

• RDBMS
• Declarative query languages
• Schemas
• Logical data independence
• Indexing
• Algebraic optimization
• ACID/Transactions

• Map-reduce
• High scalability
• Fault-tolerance
• “One-person deployment”

Spark, Pig, Hive,
DryadLINQ – try to

incorporate this into
map-reduce

