
Roadmap

Stable storage

External memory
algorithms and
data structures

Implementing
relational
operators

Introduction to
query optimization

Parallel
dataflow

Algorithms for
MapReduce

Implementing
concurrency

Implementing
resilience –
coping with

system failures

Handling large amount of data efficiently

Concurrency

Lecture 05.01

By Marina Barsky
Winter 2017, University of Toronto

We have learned:

• Where and how data is stored

• How to process large amounts of data efficiently

• How to ask questions about data – and how to implement
efficient answers to these questions

• How to preserve data integrity: dealing with crashes and
concurrency

next

Why concurrent execution

• It is possible for multiple queries to be submitted at

approximately the same time

• Many queries are both complex and time consuming: finishing

these queries would make other queries wait a long time for a

chance to execute

• Disk usage can be optimized for several queries running in

parallel (recall – elevator algorithm)

So, in practice, the DBMS may be running many different

queries at about the same time

Problems with concurrency:
two people—one bank account

• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b)

b=100

READ(X, c)

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, b)

Monica: thinks
50 $ left

Ryan: thinks
0 $ left

In fact, the withdrawn amount is 150$

Problems with concurrency:
two people—one bank account

• Before withdrawing money, each needs to check if the balance is sufficient

• Initially there is 100$ on the account

Ryan Monica____________________

READ(X, b)

b=100

READ(X, c)

c = 100

c - = 50

WRITE (X, c)

b - = 100

WRITE (X, b)

The problem is that the reading and writing operations should be
performed as one transaction, their combination should be atomic

Transactions: recap

• DBMS groups SQL statements into transactions.

• The transaction is the atomic unit of execution of database

operations

• By default, each query or DML statement is a transaction

• User program can group multiple SQL statements into a

single transaction

Transaction ends when:

• A COMMIT or ROLLBACK are issued

• A DDL (CREATE, ALTER, DROP …) or DCL

(GRANT, REVOKE) statement is issued

• A user properly exits (COMMIT)

• System crashes (ROLLBACK)

Subsets of SQL

Queries: SELECT

Data Manipulation Language

(DML): INSERT, UPDATE, DELETE

Data Definition Language (DDL):

CREATE, ALTER, DROP, RENAME

Transaction control: COMMIT,

ROLLBACK

Data Control Language (DCL):

GRANT, REVOKE

AUTOCOMMIT (Oracle syntax)

• Environment variable AUTOCOMMIT is by default set to OFF

• A user can set it to

SET AUTOCOMMIT ON

SET AUTOCOMMIT IMMEDIATE

and every SQL statement becomes a single transaction

• In the middle of transaction, the user can see the changed data by
issuing SELECT queries.

• The user is getting the data from the temporary storage area.

• Other users cannot see the changes until transaction has been
committed

Transaction properties: ACID

• Atomicity: Whole transaction or none is done.

• Consistency: Database constraints preserved. Transaction,
executed completely, takes database from one consistent
state to another

• Isolation: It appears to the user as if only one (his) process
executes at a time.

• That is, even though actions of several transactions
might be interleaved, the net effect is identical to
executing all transactions one after another in some
serial order.

• Durability: Effects of a process survive a crash.

Interleaving

• DBMS has to interleave the actions of several transactions

(see slide)

• Interleaving of transactions may lead to anomalies even if

each individual transaction preserves all the database

constraints

Recording transactions

• To reason about the order of interleaving transactions, we can
abstract each transaction into a sequence of reads and writes
of disk data

• For example, withdrawing of money from the account can be
written as:

r1(A); w1(A)

• Then we can record the sequence of commands received by
DBMS as:

r1(A); w1(A); r2(A); w2(A)

That means that transaction T1 reads database
element A, does something with it in main
memory and writes it back to the database

Recording sequence of commands

• Then we can record the sequence of commands from 2
transactions received by DBMS as:

r1(A); w1(A); r2(A); w2(A)

Transactions and Schedules: notation

• To ensure that interleaving does not lead to anomalies, DBMS
schedules the execution of each action in a certain way

• A schedule is a list of actions for a set of interleaved transactions

Possible schedule:

T1 T2

r(A)

r(A)

w(A)

commit

w(A)

commit

Anomalies of interleaving: case 1

• Consider two transactions T1 and T2, each of which, when

running alone preserves database consistency:

• T1 transfers $100 from A to B (e.g. from checking to

saving account)

• T2 increments both A and B by 1% (e.g. daily interest)

• The list of actions received by DBMS:

r1(A); w1(A);r1(B);w1(B);r2(A);w2(A);r2(B);w2(B)

DBMS decides on the following schedule:

T1 T2_________

r(A)

w(A)

r(A)

w(A)

r(B)

w(B)

commit

r(B)

w(B)

commit

What is the
problem?

Anomalies of interleaving
transactions: possible schedule

T1 T2

r(A)

w(A)

r(A)

w(A)

r(B)

w(B)

commit

r(B)

w(B)

commit

T1 deducted $100 from A

Anomalies of interleaving
transactions: case 1

T2
incremented
both A and B
by 1%

T1 added $100 to B

T1 T2

r(A)

w(A)

r(A)

w(A)

r(B)

w(B)

commit

r(B)

w(B)

commit

T1 deducted $100 from A

Anomalies: case 1
reading uncommitted data

T2
incremented
both A and B
by 1%

T1 added $100 to B

The problem is that the bank didn’t pay interest on the $100 that was being
transferred. This happened because T2 was reading uncommitted values.

Anomalies of interleaving
transactions: case 2

• Suppose that A is the number of copies available for a book.

• Transactions T1 and T2 both place an order for this book. First
they check the availability of the book.

• Consider the following scenario:
1. T1 checks whether A is greater than 1.

Suppose T1 sees (reads) value 1.

2. T2 also reads A and sees 1.
3. T2 decrements A to 0.
4. T2 commits.
5. T1 tries to decrement A, which is now 0, and gets an error

because some integrity check doesn’t allow it.

1. T1 checks whether A is greater than 1.

Suppose T1 sees (reads) value 1.

2. T2 also reads A and sees 1.

3. T2 decrements A to 0.

4. T2 commits.

5. T1 tries to decrement A, which is now 0, and gets an error because
some integrity check doesn’t allow it.

Anomalies: case 2
unrepeatable reads

The problem is that because value of A has been changed by T1, when T2
reads A for the second time, before updating it, the value is different from
that when T2 started.

• Suppose that Larry and Harry are two employees, and their salaries must be

kept equal. T1 sets their salaries to $1000 and T2 sets their salaries to $2000.

• Now consider the following schedule:

T1 T2______

r(Larry)

w(Larry)

r(Harry)

w(Harry)

r(Harry)

w(Harry)

r(Larry)

w(Larry)

commit

commit

Anomalies of interleaving
transactions: case 3

What is the
problem?

• Suppose that Larry and Harry are two employees, and their salaries must be

kept equal. T1 sets their salaries to $1000 and T2 sets their salaries to $2000.

• Now consider the following schedule:

T1 T2______

r(Larry)

w(Larry)

r(Harry)

w(Harry)

r(Harry)

w(Harry)

r(Larry)

w(Larry)

commit

commit

Anomalies of interleaving
transactions: case 3

$1000 to Harry

$2000 to Larry

T1 T2______

r(Larry)

w(Larry)

r(Harry)

w(Harry)

r(Harry)

w(Harry)

r(Larry)

w(Larry)

commit

commit

Anomalies: case 3
overwriting uncommitted data

The problem is that T1 has overridden the result
of T2, while T2 has not yet been committed.

Anomalies of interleaving

• Reading uncommitted data

• Unrepeatable reads

• Overriding uncommitted data

None of these would happen if we
were executing transactions one after
another: serial schedules

Notations

• A transaction (model) is a sequence of r and w requests on
database elements

• A schedule is a sequence of reads/writes actions performed by
a DBMS: to achieve interleaving and at the same time preserve
consistency

• Serial Schedule = All actions for each transaction are
consecutive.

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B); …

• Serializable Schedule: A schedule whose “effect” is equivalent
to that of some serial schedule.

Serializable schedules
Sufficient condition for serializability

Equivalent schedules and conflicts

• Two transactions conflict if they access the same data element and at least
one of the actions is a write.

• ri(X); rj(Y) ≡ rj(Y); ri(X) (even when X=Y)

• We can flip ri(X); wj(Y) as long as X≠Y

• However, ri(X); wj (X) wj(X); ri (X)

• We can flip wi(X); wj(Y); provided X≠Y

• However, wi(X); wj(X) wj(X); wi(X);

The final value of X may be different depending on which write occurs
last.

No conflict

No conflict

Conflict!

No conflict

Conflict!

There is a conflict if one of these two conditions hold:

1. A read and a write of the same X, or

2. Two writes of the same X

• Such actions conflict in general and may not be swapped in
order.

• All other events (reads/writes) of 2 different transactions
may be swapped without changing the effect of the
schedule.

Conflicts: summary

Sufficient condition for serializable
schedule

A schedule is conflict-serializable if it can be converted into
a serial schedule by a series of non-conflicting swaps of
adjacent elements

Example:

r1(A); w1(A); r2(A); w2(A); r1(B); w1(B); r2(B); w2(B)

r1(A); w1(A); r2(A); r1(B); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w2(A); w1(B); r2(B); w2(B)

r1(A); w1(A); r1(B); r2(A); w1(B); w2(A); r2(B); w2(B)

r1(A); w1(A); r1(B); w1(B); r2(A); w2(A); r2(B); w2(B)

Non-conflicting swaps:

Result: serial schedule

What can we say about the
original schedule?

Conflict-serializability
Sufficient condition for serializability but not necessary.

Example

S1: w1(Y); w1(X); w2(Y); w2(X); w3(X); -- This is serial

S2: w1(Y); w2(Y); w2(X); w1(X); w3(X);

S2 isn’t conflict-serializable, but it is serializable. It has the

same effect as S1.

Intuitively, the values of X written by T1 and T2 have no

effect, since T3 overwrites them.

This is called view-serializable,
and requires from scheduler to
understand what each action is
doing, not just its type

Serializability/precedence Graphs

• Non-swappable pairs of actions represent potential conflicts
between transactions.

• The existence of non-swappable actions enforces an
ordering on the transactions that include these actions.

We can represent this order by a graph
• Nodes: transactions {T1,…,Tk}
• Arcs: There is a directed edge from Ti to Tj if they have

conflicting access to the same database element X and Ti is
first:

written Ti <S Tj.

Precedence graphs: example 1

r2(A); r1(B); w2(A); r3(A); w1(B); w3(A); r2(B); w2(B)

Note the following:

▪w1(B) <S r2(B)

▪r2(A) <S w3(A)

➢These are conflicts since
they contain a read/write on
the same element

➢They cannot be swapped.
Therefore T1 < T2 < T3

1 2 3

Conflict-serializable

Precedence graphs: example 2

r2(A); r1(B); w2(A); r2(B); r3(A); w1(B); w3(A); w2(B)

Note the following:

▪r1(B) <S w2(B)

▪w2(A) <S w3(A)

▪r2(B) <S w1(B)

➢Here, we have

T1 < T2 < T3,

but we also have

T2 < T1

1 2 3

Not conflict-serializable

• If there is a cycle in the graph, then there is no serial
schedule which is conflict-equivalent to S.

• Each arc represents a requirement on the order of
transactions in a conflict-equivalent serial schedule.

• A cycle puts too many requirements on any linear order
of transactions.

• If there is no cycle in the graph, then any topological
order* of the graph suggests a conflict-equivalent
schedule.

Precedence graphs:
test for conflict-serializability

*A topological ordering of a directed acyclic graph (DAG) is a linear ordering of its nodes in
which each node comes before all nodes to which it has outbound edges

Theorem: If a Precedence-Graph is acyclic, it
represents a conflict-serializable schedule

Proof idea:
if the precedence graph is acyclic, then we can swap actions to form serial
schedule.

• Given that the precedence graph is acyclic, there exists Tk such that
there is no Tm that Tk depends on, i.e. Tk does not have any incoming
edges.

• In this case, we can bring all actions of Tk to the front of the schedule.
(Actions of Tk)(Actions of the other n-1 transactions)

• The tail is a precedence graph that is the same as the original without
Tk, i.e. it has n-1 nodes.

• Repeat for the tail.

Enforcing serializability by locks

• If scheduler allows multiple transactions access the same
element, this may result in non-serializable schedule

• To prevent this, before reading or writing an element X, a
transaction Ti requests a lock on X from the scheduler.

• The scheduler can either grant the lock to Ti or make Ti wait for
the lock.

• If granted, Ti should eventually unlock (release) the lock on X.

• Notations:

Li(X) = “transaction Ti requests a lock on X”

ui(X) (or uLi(X))= “Ti unlocks/releases the lock on X”

Schedule with locks - constraints:

Consistency of Transactions:

• Read or write X only when hold a lock on X.

ri(X) or wi(X) must be preceded by some Li(X) with no intervening
ui(X).

• If Ti locks X, Ti must eventually unlock X.

Every Li(X) must be followed by ui(X).

Legality of Schedules:

• Two transactions may not have locked the same element X without
one having first released the lock.

A schedule with Li(X) cannot have another Lj(X) until ui(X) appears
in between.

Legal schedule with locks

• T1 adds 100 to both A and B

• T2 doubles both A and B

• Expected result: A=B, and
should be 250 for both by
the end

Legal schedule
doesn’t mean
serializable!

T1 T2 A B

25 25

L1(A); r1(A)

A = A + 100

w1(A);u1(A) 125

L2(A);r2(A)

A = A * 2

w2(A);u2(A) 250

L2(B);r2(B)

B = B * 2

w2(B);u2(B) 50

L1(B);r1(B)

B = B + 100

w1(B);u1(B) 150

T1 unlocks
A so T2 is

free to
lock it

Two-Phase Locking
T1 T2 A B

25 25

L1(A); r1(A)

A = A + 100

w1(A); L1(B); u1(A) 125

L2(A);r2(A)

A = A * 2

w2(A) 250

L2(B) Denied

r1(B)

B = B + 100 125

w1(B);u1(B)

L2(B);u2(A);r2(B)

B = B * 2

w2(B);u2(B) 250

There is a simple
condition, which
guarantees conflict-
serializability:

In every transaction, all
lock requests (phase 1)
precede all unlock
requests (phase 2).

Theorem: A legal schedule with
2PL locking is conflict-serializable

• Proof idea: in 2PL each transaction that starts unlocking, has already acquired
all locks on its elements, and thus all its actions can be moved to the front of
the schedule

• Proof by contradiction: S={T1,…,Tn}. Find the first transaction, say T1, to
perform an unlock action, say u1(X). We show that the r/w actions of T1 can
be moved to the front of the other transactions without conflict.

• Consider some action such as w1(Y). Let assume that it is preceded by some
conflicting action w2(Y) or r2(Y). In such a case we cannot swap them.

• If so, then u2(Y) and L1(Y) must interleave, as

w2(Y)...u2(Y)...L1(Y)...w1(Y)

• Since T1 is the first to unlock, u1(X) appears before u2(Y).

• But then L1(Y) appears after u1(X), contradicting 2PL.

A legal schedule with 2PL locking
is conflict-serializable

• Conclusion: w1(Y) can slide forward in the schedule without conflict; similar
argument for a r1(Y) action.

w1(Y)w2(Y)

u2(Y) L1(Y)u1(X)

T1 is first to
unlock (given)

T1 needs to lock Y after some
other conflicting action of T2

Assumption: T2 performs conflicting
action on Y, needs to unlock

But 2PL forbids locking after
unlocking - CONTRADICTION

Simple locks are too restrictive

• While simple locks + 2PL guarantee conflict-serializability,

they do not allow two readers of DB element X at the
same time.

• But having multiple readers is not a problem for conflict-
serializability (since read actions commute)!

Solution: Two types of locks:

I. Shared lock sLi(X) allows Ti to read, but not write X.

It prevents other transactions from writing X but not from
reading X.

II. Exclusive lock xLi(X) allows Ti to read and/or write X.

No other transaction may read or write X.

Shared/Exclusive Locks

Consistency of transactions:

• A read ri(X) must be preceded by sLi(X) or xLi(X), with no intervening ui(X).

• A write wi(X) must be preceded by xLi(X), with no intervening ui(X).

Legal schedules:

• No two exclusive locks on the same element.

If xLi(X) appears in a schedule, then there cannot be a xLj(X) until after a
ui(X) appears.

• No shared locks on exclusively locked element.

If xLi(X) appears, there can be no sLj(X) until after ui(X).

• No writing in shared lock mode

If sLi(X) appears, there can be no wj(X) until after ui(X).

2PL condition:

• No transaction may have a sL(X) or xL(X) after a u(Y).

Shared/Exclusive Locks: changes

Scheduler rules for
shared/exclusive locks

• When there is more than one kind of lock, the scheduler needs a

rule that says “if there is already a lock of type A on DB element

X, can I grant a lock of type B on X?”

• The compatibility matrix answers the question.

Compatibility Matrix for Shared/Exclusive Locks

Scheduling with locks: example

r1(A); r2(B); r3(C); r1(B); r2(C); r3(D); w1(A); w2(B); w3(C);

T1 T2 T3
xl(A); r1(A)

xl(B); r2(B)
xl(C); r3(C)

sl(B) denied
sl(C) denied

sl(D); r3(D); ul(D)
w1(A);

w2(B);
w3(C); ul(C)

sl(C); r2(C);
ul(B); ul(C)

sl(B); r1(B);
ul(A); ul(B)

Upgrading Locks
• Instead of taking an exclusive lock immediately, a transaction can take a shared

lock on X, read X, and then upgrade the lock to exclusive so that it can write X.

Upgrading Locks allows more
concurrent operations:

Had T1 asked for an exclusive lock
on B before reading B, the request
would have been denied, because

T2 already has a shared lock on B.

Scheduling with upgrade locks:
example

r1(A); r2(B); r3(C); r1(B); r2(C); r3(D); w1(A); w2(B); w3(C);

T1 T2 T3
sl(A); r1(A);

sl(B); r2(B);
sl(C); r3(C);

sl(B); r1(B);
sl(C); r2(C);

sl(D); r3(D);
xl(A); w1(A);
ul(A); ul(B);

xl(B); w2(B);
ul(B); ul(C);

xl(C); w3(C);
ul(C); ul(D);

Compared to slide 47: no waiting

Possibility of Deadlocks
Example:T1 and T2 each reads X and later writes X.

“When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start
up again until the other has gone.”

T1 T2

sL1(X)

sL2(X)

xL1(X) denied

xL2(X) denied

Problem: when we allow upgrades, it is
easy to get into a deadlock situation.

Solution: Update Locks

Update lock udLi(X)

• Only an update lock (not shared lock) can be upgraded to exclusive lock
(if there are no shared locks anymore).

• A transaction that will read and later on write some element A, asks
initially for an update lock on A, and then asks for an exclusive lock on
A. Such transaction doesn’t ask for a shared lock on A.

Legal schedules

• Read action permitted when there is either a shared or update lock.

• An update lock can be granted while there is a shared lock, but the
scheduler will not grant a shared lock when there is an update lock.

2PL condition

• No transaction may have an sl(X), udl(X) or xl(X) after a u(Y).

Update Locks: scheduler rules

Compatibility Matrix for

Shared/Exclusive/Update Locks

Schedule with update locks:
example

T1 T2 T3
sL(A); r(A)

udL(A); r(A)
sL(A) Denied

xL(A) Denied
u(A)

xL(A); w(A)
u(A)

sL(A); r(A)
u(A)

(No) Deadlock Example
T1 and T2 each read X and later write X.

Deadlock when using sL

and xL locks only.

Fine when using
update locks.

T1 T2

sL1(X);

sL2(X);

xL1(X); denied

xL2(X); denied

T1 T2

udl1(X); r(X);

udL2(X); denied

xL1(X); w(X); u(X);

udl2(X); r2(X);
xl2(X); w2(X); u2(X)

Scheduling with 3 types of locks:
example
r1(A); r2(B); r3(C); r1(B); r2(C); r3(D); w1(A); w2(B); w3(C);

T1 T2 T3
uL(A); r1(A);

uL(B); r2(B);
uL(C); r3(C);

sL(B); denied
sL(C); denied

sL(D); r3(D);
xl(A); w1(A);

xL(B); w2(B);
xL(C); w3(C);
uL(D); uL(C);

sL(C); r2(C);
uL(B); uL(C);

sL(B); r1(B);
uL(A); uL(B);

Benefits of Update Locks
T1 T2 T3 T4 T5 T6 T7 T8 T9
sl(A);r(A)

sl(A);r(A)
sl(A);r(A)

sl(A);r(A)
ul(A);r(A)

sl(A);denied
sl(A);denied

sl(A);denied
sl(A);denied

u(A)
u(A)

u(A)
u(A)

xl(A);w(A)
u(A)

s(A);r(A)
s(A);r(A)

s(A);r(A)
s(A);r(A)

sl – shared lock
ul – update lock
xl – exclusive lock
u - unlock

Transaction control in SQL
Gives control over the locking overhead

• Access mode:

• READ ONLY

• READ WRITE

• Isolation level (to which extent transaction is exposed to
actions of other transactions):

• SERIALIZABLE (Default)

• REPEATABLE READ

• READ COMMITED

• READ UNCOMMITED

What we can allow at different
isolation levels
1. Reading uncommitted (dirty) data:

• A transaction reads data written by a concurrent
uncommitted transaction

2. Unrepeatable reads

• A transaction re-reads data it has previously read and
finds that data has been modified by another
transaction (that committed since the initial read)

3. Phantom read

• A transaction re-executes a query returning a set of rows
that satisfy a search condition and finds that the set of
rows satisfying the condition has changed due to
another recently-committed transaction.

Transaction Isolation Levels

SET TRANSACTION ISOLATION LEVEL X READ WRITE

Where X can be

SERIALIZABLE (Default)

REPEATABLE READ

READ COMMITED

READ UNCOMMITED

With a scheduler based on locks:

• A SERIALIZABLE transaction obtains locks before reading and writing objects,
including locks on sets (e.g. table) of objects that it requires to be unchangeable
and holds them until the end, according to 2PL.

• A REPEATABLE READ transaction sets the same locks as a SERIALIZABLE
transaction, except that it doesn’t lock sets of objects, but only individual
objects.

Decreasing isolation level

• A READ COMMITED transaction T obtains exclusive locks before writing objects
and keeps them until the end. However, it obtains shared locks before reading
values and then immediately releases them;

That is to ensure that the transaction that last modified the values is
complete.

• T reads only the changes made by committed transactions.

• No value written by T is changed by any other transaction until T is
completed.

• However, a value read by T may well be modified by another transaction
(which eventually commits) while T is still in progress.

• T is also exposed to the phantom problem.

• A READ UNCOMMITED transaction doesn’t obtain any lock at all. So, it can
read data that is being modified. Such transactions are allowed to be READ
ONLY only.

Transaction Isolation Levels

Problems at each isolation level

Level Reading

Uncommitted Data

(Dirty Read)

Unrepeatable

Read (different

values in the same

rows)

Phantom (different

collections of

rows)

READ

UNCOMMITED

Maybe Maybe Maybe

READ

COMMITTED

No Maybe Maybe

REPEATABLE

READ

No No Maybe

SERIALIZABLE No No No

Summary: ACID transactions

• Consistency: Database constraints preserved. Transaction,
executed completely, takes database from one consistent
state to another: serializable schedules

• Isolation: It appears to the user as if only one process
executes at a time: locking

Finally we talk how to ensure:

• Atomicity: Whole transaction or none is done.

• Durability: Effects of a process survive a crash.

