
Recovery from failures

Lecture 05.02

By Marina Barsky
Winter 2017, University of Toronto

Definition:

• Consistent state: all constraints are satisfied

• Consistent DB: DB in consistent state

Observation:
DB cannot be consistent at all times

Example: a1 + a2 +…. an = TOT (constraint)

Deposit $100 in a2: a2  a2 + 100

TOT  TOT + 100

.

.

50

.

.

1000

.

.

150

.

.

1000

.

.

150

.

.

1100

a2

TOT

Transaction: collection of actions that
bring DB from one consistent state to
another

Consistent DB Consistent DB’T

If T starts with consistent state + T executes in isolation

T leaves in a consistent state

We learned how to ensure that concurrent (interleaving) actions appear as if
each transaction runs in isolation

Inconsistent DB

When we may end up with an
inconsistent DB?

• Erroneous data entry

• Transaction bug (application programmer error)

• DBMS bug (DBMS programmer error)

• Other program bug (overrides memory page)

• System and media failures
• power loss
• memory failure
• processor stop
• disk crash
• catastrophic failure: earthquake, flood, end of world

Coping with system failures

• Logging (undo, redo, undo-redo)

• Recovery using log

• Checkpointing

• Redundancy:
• Replicate disk storage (RAID)
• Memory parity
• Archiving

Memory Disk

x xx

t P INPUT(X)READ(X,t)

WRITE(X,t) OUTPUT(X)

There are 3 address spaces involved in a transaction:

1. The disk blocks
2. The main memory (buffer) pages
3. The local variables of a Transaction

Primitive operations of transactions

Operations:

• Between buffer and disk:

• Input (x): block containing x memory buffer
• Output (x): block containing x  disk

• Between transaction and buffer pages:
• Read (x,t): do input(x) if necessary

t  value of x in page
• Write (x,t): do input(x) if necessary

value of x in page  t

Example: effect of transaction on
state of memory and disk

Action t M-A M-B D-A D-B

1. READ(A,t) 8 8 8 8

2. t := t*2 16 8 8 8

3. WRITE(A,t) 16 16 8 8

4. READ(B,t) 8 16 8 8 8

5. t := t*2 16 16 8 8 8

6. WRITE(B,t) 16 16 16 8 8

7. OUTPUT(A) 16 16 16 16 8

8. OUTPUT(B) 16 16 16 16 16

A=8
B=8
Constraint: A=B (on disk)

T1: A  A  2
B  B  2

Example: effect of transaction on
state of memory and disk

Action t M-A M-B D-A D-B

1. READ(A,t) 8 8 8 8

2. t := t*2 16 8 8 8

3. WRITE(A,t) 16 16 8 8

4. READ(B,t) 8 16 8 8 8

5. t := t*2 16 16 8 8 8

6. WRITE(B,t) 16 16 16 8 8

7. OUTPUT(A) 16 16 16 16 8

8. OUTPUT(B) 16 16 16 16 16

A=8
B=6
Constraint: A=B

T1: A  A  2
B  B  2

CRASH

Example: effect of transaction on
state of memory and disk

Action t M-A M-B D-A D-B

1. READ(A,t) 8 8 8 8

2. t := t*2 16 8 8 8

3. WRITE(A,t) 16 16 8 8

4. READ(B,t) 8 16 8 8 8

5. t := t*2 16 16 8 8 8

6. WRITE(B,t) 16 16 16 8 8

7. OUTPUT(A) 16 16 16 16 8

A=8
B=6
Constraint: A=B

T1: A  A  2
B  B  2

Inconsistent DB!

How to prevent an inconsistent state?

• We cannot prevent an inconsistent state, but we can arrange
for the problem to be repaired

• Running the transaction again may not fix the problem

• Need atomicity: execute
• all actions of a transaction
• or none at all

Solution 1:
undo logging (immediate modification on disk)

Log records

• A log is a file opened for append only

• It consists of log records, each telling something about what
some transaction has done.

Log records:

<T , START>: This record indicates that transaction T has
begun.

<T , COMMIT >: Transaction T has completed successfully and
will make no more changes to database elements.

<T, ABORT >: Transaction T could not complete successfully.

<T, X, v>: Transaction T has changed database element X , and
its old value was v.

Undo logging rules

(1) For every action generate update log record (containing
old value)

(2) Before x is modified on disk, log records pertaining to x
must be on disk (write ahead logging: WAL)

(3) Before commit is written to log, all writes of transaction
must be reflected on disk (forced to disk)

This is called force rule

Undo log - must write to disk in the
following order:

1. The log records indicating that some db elements have
changed.

2. The changed database elements themselves.

3. The COMMIT log record.

WAL log Updated
DB blocks

COMMIT

UNDO logging

T1: Read (A,t); t  t2 A=B

Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

Example: Undo logging (Immediate modification)

T1: Read (A,t); t  t2 A=B

Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

16
16

<T1, start>
<T1, A, 8>
<T1, B, 8>

Example: Undo logging (Immediate modification)

T1: Read (A,t); t  t2 A=B

Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

Example: Undo logging (Immediate modification)

T1: Read (A,t); t  t2 A=B

Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

16
16

<T1, start>
<T1, A, 8>

16 <T1, B, 8>

16

Example: Undo logging (Immediate modification)

T1: Read (A,t); t  t2 A=B

Write (A,t);
Read (B,t); t  t2
Write (B,t);
Output (A);
Output (B);

A:8
B:8

A:8
B:8

memory disk log

16
16

<T1, start>
<T1, A, 8>

<T1, commit>
16 <T1, B, 8>

16

Example: Undo logging (Immediate modification)

Flushing log to disk: explicitly

• Log is first written in memory

• Not written to disk on every action

A: 8 16
B: 8 16

Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8
B: 8

DB

LOG

MEMORY

Flushing log to disk: explicitly

• Log is first written in memory

• Not written to disk on every action

A: 8 16
B: 8 16
Log:
<T1,start>
<T1, A, 8>
<T1, B, 8>

A: 8 16
B: 8

DB

LOG

MEMORY

BAD STATE:
cannot recover!

If database changed
before log records
reached disk

Order of steps and disk writes in case
of UNDO log

Step Activity t M-A M-B D-A D-B Log

1) <T,START>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16

11) <T,COMMIT>

12) FLUSH LOG

Before
writing
to disk

After
logging
commit

Recovery using UNDO log

For every Ti with <Ti, start> in log:
If <Ti,commit> or <Ti,abort> in log, do nothing
else

For all <Ti, X, v> in log:

write (X, v)

output (X)

write <Ti, abort> to log

Because multiple uncommitted transactions could
potentially modify the same element several times, the
undo operations are in reverse order (latest  earliest)

What if failure during recovery?

No problem! Undo idempotent

Example: Recovery using Undo log

The crash occurs after step (12). Then the <C0MMIT T> record reached disk before
the crash. When we recover, we do not undo the results of T, and all log records
concerning T are ignored by the recovery manager.

Step Activity t M-A M-B D-A D-B Log

1) <T,START>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16

11) <T,COMMIT>

12) FLUSH LOG

Example: Recovery using Undo log

The crash occurs between steps (11) and (12). If <C0MMIT T> record reached disk
see previous case, if not, see next case.

Step Activity t M-A M-B D-A D-B Log

1) <T,START>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16

11) <T,COMMIT>

12) FLUSH LOG

Example: Recovery using Undo log

The crash occurs between steps (10) and (11). Now, the COMMIT record surely was
not written, so T is incomplete and is undone.

Step Activity t M-A M-B D-A D-B Log

1) <T,START>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16

11) <T,COMMIT>

12) FLUSH LOG

Example: Recovery using Undo log

The crash occurs between steps (8) and (10). Again, T is undone. In this case the
change to A and/or B may not have reached disk. Nevertheless, the proper value, 8,
is restored for each of these database elements.

Step Activity t M-A M-B D-A D-B Log

1) <T,START>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16

11) <T,COMMIT>

12) FLUSH LOG

Example: Recovery using Undo log

The crash occurs prior to step (8). Now, it is not certain whether any of the log
records concerning T have reached disk. If the change to A and/or B reached disk,
then the corresponding log record reached disk. Therefore if there were changes to A
and/or B made on disk by T, then the corresponding log record will cause the
recovery manager to undo those changes.

Step Activity t M-A M-B D-A D-B Log

1) <T,START>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,8>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,8>

8) FLUSH LOG

9) OUTPUT(A) 16 16 16 16 8

10) OUTPUT(B) 16 16 16 16 16

11) <T,COMMIT>

12) FLUSH LOG

Problems with UNDO logging

• The buffer pages forced to disk before writing <COMMIT T>, at the
time that could be not the best from the disk performance
perspective

• Too many disk I/Os

• How can we save disk I/Os allowing changed data reside in memory
buffers for a while?

Solution 2:
Redo logging

Redo logging rules

(1) For every action, generate redo log record (containing new
value)

(2) Before X is modified on disk (DB), all log records for
transaction that modified X (including commit) must be on
disk

(3) Flush log at commit

Redo log - must write to disk in the
following order:

1. The log records indicating changed database elements.

2. The COMMIT log record.

3. The changed database elements themselves.

The changes remain in buffer until COMMIT log record reaches disk. That
means that we cannot free dirty pages, until transaction is complete, we
cannot steal them – this is called no steal rule

WAL log Updated
DB blocks

COMMIT

REDO logging

Example: Redo logging (deferred
modification)

T1: Read(A,t); t t2; write (A,t);

Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

LOG

T1: Read(A,t); t t2; write (A,t);

Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

Example: Redo logging (deferred
modification)

T1: Read(A,t); t t2; write (A,t);

Read(B,t); t t2; write (B,t);

Output(A); Output(B)

A: 8
B: 8

A: 8
B: 8

memory DB

LOG

16
16

<T1, start>
<T1, A, 16>
<T1, B, 16>

<T1, commit>

output

16
16

Example: Redo logging (deferred
modification)

Order of steps and disk writes in case
of REDO log

Step Activity t M-A M-B D-A D-B Log

1) <T,START>

2) READ(A,t) 8 8 8 8

3) t := t*2 16 8 8 8

4) WRITE(A,t) 16 16 8 8 <T,A,16>

5) READ(B,t) 8 16 8 8 8

6) t := t*2 16 16 8 8 8

7) WRITE(B,t) 16 16 16 8 8 <T,B,16>

8) <T,COMMIT>

9) FLUSH LOG

10) OUTPUT(A) 16 16 16 16 8

11) OUTPUT(B) 16 16 16 16 16

After
logging
commit

Recovery using REDO log

For each Ti with <Ti, commit> in log:
For all <Ti, X, v> in log:

Write(X, v)
Output(X)

For each Ti without commit, write <Ti, abort>

Because we need to replay committed transactions in
the order they were executed, the redo operations are
in forward order (earliest  latest)

Key drawbacks

• Undo logging: need frequent disk writes

• Redo logging: need to keep all modified blocks in memory
until commit

Solution: undo/redo logging –
increased flexibility at the expense

of larger log

Undo/redo logging

Update  <Ti, X, Old X val, New X val >

• Page with X can be flushed before or after <COMMIT T> is
written

• Log record has to be flushed before corresponding updated
page (WAL)

• Flush log after <COMMIT T> is written (solves problem of
delayed commitment)

WAL log Updated
DB blocks

COMMIT

UNDO/REDO logging

Undo/redo logging rules

UR1 Before modifying any database element X on disk
because of changes made by some transaction T, it is
necessary that the update log record <T, X , v, w> appear on
disk.

UR2 A <C0MMIT T> record must be flushed to disk as soon as
it appears in the log

Undo/redo recovery policy

1. Redo all the committed transactions in the order earliest-
first, and

2. Undo all the uncommited transactions in the order latest-
first.

Log needs to be truncated

• Log can become larger than DB itself

• It takes too much time to check all the log records when
recovery is needed

• We want to truncate some old log records, which are no
longer needed

• Can we delete everything prior to <T,COMMIT>?

Solution: checkpointing

No, because the actions of some
uncommitted transactions are interleaving

Quiescent checkpointing

Periodically:

(1) Do not accept new transactions

(2) Wait until all transactions finish

(3) Flush all log records to disk (log)

(4) Flush all buffers to disk (DB) (do not discard buffers)

(5) Write “checkpoint” record on disk (log)

(6) Resume transaction processing

Problem: while waiting for all
active transactions to
complete, DB appears stalled
to its users

Every transaction executed before checkpoint has finished and the log can be
truncated

Solution:
non-quiescent checkpointing

Non-quiescent checkpointing

1. Write log record <START CKPT(T1, …Tk)>

(T1 … Tk are active transactions)

and flush log.

2. Wait until all T1 … Tk commit or abort, but don’t prohibit
other transactions from starting.

3. When all T1 … Tk have completed, write a log record
<END CKPT> and flush the log.

Recovery using UNDO log with
checkpointing – in words

Scanning log backwards:

• If we first meet an <END CKPT> record, then we know that all incomplete

transactions began after the <START CKPT (T1, ... ,Tk)> record.

We may thus scan backwards as far as this <START CKPT>, and then stop;

previous log is useless and may be discarded after the recovery.

• If we first meet a record < START CKPT (T1, ... , Tk)>, then the crash

occurred during the checkpoint. We need scan no further back than the

start of the earliest of these incomplete transactions.

• General rule: once <END CKPT> is written, we can discard the log prior to

the preceding <START CKPT> record

Recovery using undo –
start checkpoint

memory disk log

<START CKPT T1…Tk>
All committed
transactions are
already on disk

Transactions with
commit in log

Active
(started not committed)
transactions T1…Tk

WAL log Updated
DB blocks

COMMIT

UNDO logging

Recovery using undo –
during checkpoint

memory disk log

All committed
transactions are
already on disk

Transactions with
commit in log

Active
(started not committed)
transactions T1…Tk

WAL log Updated
DB blocks

COMMIT

UNDO logging

Some of T1…Tk
commit

Some of T1..Tk are
active, partly can be
written to disk

New transactions started
during checkpoint

<START CKPT T1…Tk>

Recovery using undo –
during checkpoint

memory
disk

log

All committed
transactions are
already on disk

Transactions with
commit in log

Active
(started not committed)
transactions T1…Tk

WAL log Updated
DB blocks

COMMIT

UNDO logging

Some of T1…Tk
commit

Some of T1..Tk are
activeNew transactions started

during checkpoint
Some of new
transactions commit

Some of new are
active

<START CKPT T1…Tk>

Recovery using undo –
failure during checkpoint

memory
disk log

All committed
transactions are
already on disk

Transactions with
commit in log

Active
(started not committed)
transactions T1…Tk

WAL log Updated
DB blocks

COMMIT

UNDO logging

Some of T1…Tk
commit

Some of T1..Tk are
activeNew transactions started

during checkpoint
Some of new
transactions commit

Some of new are
active

Undo these
Scan backwards pass START
CKPT only for uncommitted

among T1…Tk

<START CKPT T1…Tk>

Recovery using undo –
end checkpoint

memory
disk log

All committed
transactions are
already on disk

Transactions with
commit in log

Active
(started not committed)
transactions T1…Tk

WAL log Updated
DB blocks

COMMIT

UNDO logging

ALL T1…Tk commit

New transactions started
during checkpoint

Some of new
transactions commit

Some of new are
active

<START CKPT T1…Tk>

<END CKPT>

Recovery using undo –
failure after end checkpoint

memory
disk log

All committed
transactions are
already on disk

Transactions with
commit in log

Active
(started not committed)
transactions T1…Tk

WAL log Updated
DB blocks

COMMIT

UNDO logging

ALL T1…Tk commit

New transactions started
during checkpoint

Some of new
transactions commit

Some of new are
active

Undo only new
Log before START

CKPT can be deleted

<START CKPT T1…Tk>

<END CKPT>

Media failure
(loss of non-volatile storage)

A: 16

Solution: Make copies of data!

Triple modular redundancy

• Keep 3 copies on separate disks

• Output(X) --> three outputs

• Input(X) --> three inputs + vote

X1 X2 X3

DB Dump + Log

backup
database

active
database

log

• If active database is lost,
– restore active database from backup
– bring up-to-date using redo entries in log

Non-quiescent archiving

• Just like checkpoint,
except that we write full database

• To restore – we need the dump and the log created during
the backup

database

create backup database:
for i := 1 to DB_Size do

[read DB block i; write to backup]

[transactions run concurrently]

Summary

• To preserve DB consistency: need mechanisms to get out of
an inconsistent state created due to failure

• Two main recovery techniques: logging and redundant
copies

• The most flexible logging protocol: undo/redo

• Checkpoints prevent log from indefinite growth

Mechanisms that guarantee ACID
transactions

• Atomicity: recovery with undo/redo logging

• Consistency: serializable schedules, logging for the event of
crash

• Isolation: serializable schedules, locking

• Durability: write-ahead logging, redundant copies

