
CSC 443
Database Management Systems

Winter 2017
Professor: Marina Barsky
http://www.cdf.toronto.edu/~csc443h/winter/

http://www.cdf.toronto.edu/~csc443h/winter/


Recap: what is a database?

A collection of data that exists over a long period of time, 
organized to afford efficient retrieval.

Two characteristics:

• Non-volatile reliable storage

• Organized for efficient operations



Useful definitions

• A data model is a collection of concepts for describing data

• A schema is a description of a particular collection of data, 
using a given data model

• A view – result of a stored query

Same data – multiple views



Example: University Database

• Logical model: 

Relational: tables

• Schema:                  

Students (sid: string, name: string, age: integer, gpa:real)

Courses (cid: string, cname:string, credits:integer) 

Enrolled (sid:string, cid:string, grade:string)

• Physical model:

Relations stored as unordered files. 

Index on first column of Students.

• View: 

Course_info (cid:string, enrollment:integer)



What is a Database Management 
System (DBMS)
A complex software for storing and managing databases.

Solves problems of:

• Scale: data exceeds main memory, specialized (quite 
complex) EM algorithms, efficiently implemented 

• Sharing: using the same data by multiple user programs 
simultaneously

• Fault-tolerance: avoiding data loss 

• Consistency: clean consistent snapshots of data, reinforcing 
data constraints



Database management system



Data models - logical abstractions 
of data 
• Files

• Network databases

• Hierarchical databases

• Relational databases

• Object-oriented databases

• NoSQL databases

• …



History

1980

1990

2000

2010

Network databases

1970

• Insertion, updates, and deletion are complex and 
inefficient

• Lack of Data Independence: a change in structure 
demands a change in the application

• Unanticipated queries cannot be performed efficiently

Order

Pen

Pencil

Eraser

Customer

Sales rep



History

1980

1990

2000

2010

Hierarchical databases

1970

• Data is repetitively stored in many different entities.

• Slow search – scan entire model from top to bottom

• One-to-many relationships only

Order Pen

Pencil

Eraser

Customer Sales rep

Order

Pencil

master

detail



History

1980

1990

2000

2010

Relational 

databases

God made the integers;

all else is the work of man.
L. Kronecker, 19-th century 
mathematician

Codd made relations;

all else is the work of man.
R. Ramakrishnan



History

1980

1990

2000

2010

Relational 

databases

Think in terms of tables, not bits on disk.

“Activities of users at terminals should remain 
unaffected when the internal representation 
of data is changed.”

• Pre-relational: if your data changed, your 
application broke

• Early RDBMSs were buggy and slow, but 
required only 5% of the application code



Relational databases: key idea

Programs that manipulate tabular data exhibit an 
algebraic structure allowing reasoning and 
manipulation independently of physical data 
representation



Algebraic optimization: symbolic 
reasoning on integers
N = ((z*2) + ((z*3) + 0))/1

Algebraic laws:

1. Identity: x+0 = x

2. Identity: x/1 = x

3. Distributive: ax + ay = a*(x+y)

4. Commutative: x*y = y*x

Apply rules 1,3,4,2:

N = (2+3)*z

One operation instead of five, no division.

Closure: each operation returns the value of 

the same type, so operations can be chained

Same idea works with relational algebra!



Recap: algebra of tables

Selection σ

Projection π

Join ⋈

Cross-product x

Union U
Difference –

Intersection ∩



What is the meaning of the 
following relational algebra 
query?

π name, storeσ city=‘ Seattle’(Orders ⋈ Customers)

A. Produce list of stores where each customer from 
Seattle made orders

B. Produce all combinations of customers and 
stores in Seattle

Product (productID, name, price)

Customer (customerID, name, city)

Order (productID, customerID, store)



Example: SQL query 

Product (productID, name, price)

Customer (customerID, name, city)

Order (productID, customerID, store)

SELECT DISTINCT p.name, c.name

FROM Product p, Order o, Customer c

WHERE p.productID = o.productID

and c.customerID = o.customerID

and p.price > 100 

and c.city = ‘Seattle’



One SQL - many equivalent RA 
expressions 

π p.name, c.name σ p.price >100 and c.city = ‘Seattle’  and p.productid = 

o.productid and c.customerID = o.customerID(P x O x C)

π p.name, c.name σ p.price >100 and c.city = ‘Seattle’ ((P ⋈ O) ⋈ C)

π p.name, c.name σ p.price >100 and c.city = ‘Seattle’ ((C ⋈ O) ⋈ P)

π p.name, c.name (σ price >100  (P) ⋈ σ c.city = ‘Seattle’ (C) )⋈ O)

SELECT DISTINCT p.name, c.name

FROM Product p, Order o, Customer c

WHERE p.productID = o.productID and c.customerID = o.customerID

and p.price > 100 and c.city = ‘Seattle’



Symbolic reasoning on big tables: 
query plan 1
π p.name, c.name σ p.price >100 and c.city = ‘Seattle’ ((P ⋈ O) ⋈ C)

π

σ

⋈

⋈

Product Order Customer 

p.name, c.name

price >100 and city = ‘Seattle’

customerID = customerID

productID = productID



Symbolic reasoning on big tables: 
query plan 2
π p.name, c.name (σ price >100  (P) ⋈ O ) ⋈ (σ c.city = ‘Seattle’ (C) ))

π

σ

⋈

⋈

Product Order Customer 

p.name, c.name

city = ‘Seattle’

customerID = customerID

productID = productID

σ
price >100

Pushing 

selections !



In what sense is "Algebraic 
Optimization" "optimizing" a user 
query?

A. The process uses faster algorithms to perform 
each step.

B. The expression is executed multiple times until 
the optimal result is determined.

C. The process finds an equivalent expression to the 
original, but one that is less expensive to 
compute - the expression has been "optimized“.



Case in favor of Relational 
Database Management Systems
RDBMS provides:

• Physical and logical data independence

• Automatic indexing

• Efficient implementation of RA operators

• Query optimization

• Support and guarantees of atomic transactions

Imagine adding all these features yourself for your next data 
product!



What do we mean by “Big data”?

• Basic demographic information—age, sex, income, ethnicity, 
language, religion, housing status, and location—of every 
living human being on the planet can be stored in 100GB

• This would create a table of 6.75 billion rows and 10 
columns. 

• Should that be considered “big data”? 

From “Pathologies of Big Data” Article by Adam Jacobs in the ACM 

Communications, August 2009. 



Data Units

K         Kilo

M        Mega 

G        Giga

T         Tera

P         Peta

102

Roughly:

202
302
402
502

310
610
910

1210
1510



Example: Volume

• The web
• 20+ billion web pages x 

20KB = 400+ TB

• One computer can read 
30-35 MB/sec from one 
disk – 4 months just to 
read the web

The web



Example: Variety

• NSF Ocean Observatories 
Initiative
• Data is collected from 

satellites, vessels, censors

• 1000 km of optic cable on the 
seafloor with thousands of 
chemical, physical, biological 
sensors

• 50 TB/year of different data 
types

Ocean Sciences



Example: Velocity

• Large Synoptic Survey 
Telescope (LSST)
• 40 TB/day

• 40+ PB in its 10 year lifetime

• 400 mbps sustained data exchange 
rate between Chile and NSCA

• Largest database in the 
world: World Data Centre for 
Climate (WDCC):
• 100 TB of sensor data/year

• 110 TB of simulation data/year

• 6PB of additional information stored 
on tapes

Astronomy



Big Data: 4V

•Volume

•Variety

•Velocity

•Veracity: can we trust this data?



Evolution of Science

• Empirical Science – collect 
and systematize facts

• Theoretical Science –
formulate theories and 
empirically test them

• Computational Science –
run automatic proofs, 
simulations

• e-Science (Data Science) 
– collect data without clear 
goal - and test theories, find 
patterns in the data itself 



Science is about asking questions

Traditionally: “Query the world”

Data acquisition for a specific hypotheses

Data science: “Download the world”

Data acquired en masse in support of future

hypotheses



Computational challenge

The cost of data acquisition has dropped

The cost of processing, integrating and analyzing data is 
the new bottleneck

“…the necessity of grappling with Big Data, and the desirability 
of unlocking the information hidden within it, is now a key 
theme in all the sciences – arguably the key scientific theme of 
our times”

F. Diebold



Efficient data manipulation

Poll: How much time modern scientists spend 
“handling data” as opposed to “doing science”?

Mode answer: 90% 

“the Next Wave of InfraSress”  (J. Mashey)



Current Trends: Big Data

source: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf


Current Trends: Lots of traffic

source: http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf

http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/NoSQL-Whitepaper.pdf


Current Trends: Cloud Computing

source: http://www.profitbricks.com/what-is-iaas

http://www.profitbricks.com/what-is-iaas


Scaling up

Two alternatives:

• Bigger servers

• Lots of little boxes in massive grids



Parallelism is not natural for 
relational databases
• Vertical: normalization, splitting into smaller tables

• Horizontal: splitting single table into multiple sets of rows

• SQL designed to run as a single node

• Both vertical partitioning and horizontal partitioning 
introduce performance bottlenecks



History

1980

1990

2000

2010

Relational databases

NoSQL databases

Aggregate databases:

Key-value
Document

Wide-column

Graph databases

String databases



Future?

1980

1990

2000

2010

Relational databases

NoSQL databases

Polyglot persistence



When to use RDBMS

• Fast application development
• Data integrity and security is important
• Loss of data is unacceptable
• Concurrent data modification: by multiple users
• Data can be easily modeled as relations



When to consider alternative data 
stores
• String databases

• Audio, video databases

• Document databases 

• Graph databases



This course objectives

• Understand a Big-picture of different aspects of DBMS

• Experience challenges of database system implementation 
through programming assignments

• Learn techniques for working with big inputs

• Be able to solve system problems without reinventing the 
wheel – using what studied and understood

Tools Abstractions



Many facets of Database studies

• Logical design
• What kinds of information to store? 

• How to model data?

• How are data items connected?

• Database programming
• How does one express queries on the database? 

• How is database programming combined with 
conventional programming?

• Database system implementation
• How does one build a DBMS



Roadmap

Stable storage

External memory 
algorithms and 
data structures 

Implementing 
relational 
operators

Introduction to 
query optimization

Parallel 
dataflow

Algorithms for 
MapReduce 

Implementing 
concurrency

Implementing 
resilience –
coping with 

system failures

Handling large amount of data efficiently



Textbook

"Database Systems: The Complete 
Book" 

by H. Garcia-Molina, 

J. D. Ullman, 

and J. Widom, 

2nd Edition.



Deliverables

• 2 programming assignments: 40%

• 10 weekly tests (during tutorials): 20%

• Final exam: 40% *

*You need to score at least 50% on the final exam in order to pass the course



Bonus – for inspired

• http://worrydream.com/ExplorableExplanations/

• http://setosa.io/ev/principal-component-analysis/

• http://setosa.io/ev/eigenvectors-and-eigenvalues/

• http://setosa.io/ev/markov-chains/

• My explorable: Knapsack 01

• Plenty of algorithms to make an explorable

http://worrydream.com/ExplorableExplanations/
http://setosa.io/ev/principal-component-analysis/
http://setosa.io/ev/eigenvectors-and-eigenvalues/
http://setosa.io/ev/markov-chains/
http://www.cdf.toronto.edu/~mgbarsky/explorables/OWL/

