
Tutorial 2 – CSC443 - Notes

Example 11.7 :

Records: 10,000,000

Record size: 160 bytes

Records/Block = 100

blocks = 100,000

Main Memory: 100 MB

Blocks Main Memory can hold: 6400

Answer 11.4.1 : From Example 11.7 We know:

10,000,000 records. 100 records/ block -> 100,000 blocks.

6400 blocks fit in main memory.

1st Phase: Data is read, 16 times in total. 15 times in chunks of 6400 blocks, and last chunk 4000 blocks.

100,000 I/Os (Read) + 100,000 I/Os (Write) = 200,000 I/Os. 11ms per IO = 37 minutes in total for 1st

phase.

2nd Phase : 1 buffer for each of 16 sublists from phase 1. 1 output buffer. Put smallest element in output

block and if output block is full -> Write to disk. Repeat until all blocks of 16 sublists processed.

I/O cost: 100,000 I/Os (Read) + 100,000 I/Os(Write) = 200,000 I/Os. 11ms per IO = 37 minutes.

Total time = 74 minutes.

Total I/Os = 200,000 + 200,000 = 400,000 I/Os

Answer 11.4.2 :

(a) : The number of tuples in R is doubled (all else remains the same):

 The relation occupies 100,000 blocks, and the sort takes 4 disk I/O's per block, or 400,000 disk I/O's. If

the number of tuples were doubled, the relation would occupy twice as many blocks, so we would expect

800,000 disk I/O's. We should check that the 2-phase sort is still possible, but since doubling the size of

the relation would require 32 sublists rather than 16, there will still be plenty of room in memory on the

second pass.

(b) : Length of Tuple is doubled from 160 to 320 bytes.

So, number of records per block reduced to 50 from 100. Relation R now fits into 10,000,000/50 =

200,000 blocks.

1st Phase: Data is read 32 times in total. 32 sorted sublists are created on disk.

I/O = 200,000 (Read) + 200,000 (Write) = 400,000 I/Os.

2nd Phase: 1 buffer for each of 32 sublists. 1 output buffer. Following merging algorithm of Two-Phase

Multi way merge sort.

I/O = 200,000(Read) + 200,000 (Write) =400,000 I/Os

Total I/O = (800,000) I/Os. (Doubled overall).

(c) : The size of blocks is doubled, to 32,768 bytes

Doubling the size of blocks reduces the number of disk I/O's needed to half, or 200,000. We might

imagine that we could keep growing the size of blocks indefinitely, and thus reduce the number of disk

I/O's to almost zero. In a sense we can, but there are limitations, including the fact that transfer time will

eventually grow to dominate other aspects of latency, in which case counting disk I/O's fails to be a good

measure of running time.

(d): The size of available main memory is doubled to 200 megabytes:

Number of blocks that fit into memory doubled to 12,800 from 6400. First phase now creates 8 sorted sub

lists instead of 16 (originally). 2nd phase performs the merge. But, total I/O cost in both phases is still

unchanged. 400,000 I/Os in total.

11.4.3:

Total records that can be sorted:

Total memory buffers available = 6400.

Max sorted sublists 1st phase can generate = 6399

1 buffer reserved for output in second phase.

Rec/block = 100.

So, max blocks that can be sorted = 6400 * 6399.

6400 * 6399 * 100 = 4,095,360,000 = (approx 4.1 billion records)

Blocks = records/100 = 40,953,600

1st phase: Num of sorted lists generated = 40953600/6400 = 6399.

2nd Phase: merge.

Total I/O = 40953600 * 4 = 163,814,400 (approx 164 million I/Os)

Time = 11ms per I/O -> 30032.64 minutes

11.4.4: Exercise 11.4.4

Binary search requires probing the block in the middle of the 100,000 blocks, then the one in the middle

of the first or second half, and so on, for log_2(100,000) = 17 probes, until we can narrow down the

presence of the desired record on one block. Thus, we require 17 disk I/O's.

11.5.5 : Exercise 11.5.5

In worse case each key value in different block. 10*log_2(100,000) = 170 I/Os.
In best case all key values in same block = 1 I/O.

