
Q: Implement UNION operator. See tutorial slides posted on course website.

Q: Implement INTERSECTION operator.

Based on Sort-Merge Join. Use the basic 2-pass sort-merge join algorithm from the lecture
slides. In the merge phase, call GetMin on all runs of R and S:

Pseudocode version:
countR <- 0
countS <- 0
lastTuple <- null
for tuple, relation <- GetMin(runs) do
 if tuple != lastTuple and lastTuple != null then

if countR >= 1 and countS >= 1 then
 Output(lastTuple)
 countR = 0
 countS = 0
 if relation == R then
 countR <- countR + 1
 else
 countS <- countS + 1
 lastTuple = tuple

Text version:
Use min-heap to get the minimum tuple from all runs of both R and S. For each tuple got, keep
track of its source relation. Only output a distinct tuple when it appears at least once in each
relation.

Based on Block Nested Loop Join. We can only use 1-Pass Block Nested Loop join
algorithm, that loads the entire S relation (or the smaller one of R and S) in memory buffer.
Because we need to have a complete view of S in order to deduplicate.

1. Load the entire S relation into memory buffer
2. Find all distinct tuples in S relation
3. Load each page of R into a buffer page. For each tuple in R in the buffer, if there is a

matching tuple in S, output the tuple, and remove the matching tuple in S.

Based on Hash Join. Remember Hash Join is just partitioning using a hash function, and run
Block Nested Loop Join on each pair of corresponding of partitions from R and S. Because of
the hash function, each partition can only join with tuples from the corresponding partition. So
here it is the same: after partitioning both R and S using a hash function, just run the
INTERSECTION algorithm based on Block Nested Loop Join on each partition.

