
Query optimization
Tutorial



Exercise 1



Exercise 1. Optimize logically

• Consider the following relational schema:

Hotel (id, name, address)

Room (rid, hid, type, price)

Booking (hid, gid, date_ from, date_to, rid)

• Translate the following SQL queries into the relational 
algebra and use the algebraic laws to improve the query 
plans. Draw tree plans (or write RA expressions), and explain 
the logic behind each optimization step.



• Query A

SELECT R.rid, R.type, R.price

FROM Room R, Booking B, Hotel H

WHERE R.rid = B.rid AND B.hid = H.hid

AND H.name = 'Hilton' AND R.price > 100



• Query B

SELECT G.gid, G.name

FROM Room R, Hotel H, Booking B, Guest G

WHERE H.hid = B.hid AND G.gid = B.gid

AND H.hid = R.hid AND H.name = 'Hilton'

AND date_from >= '1-Oct-2003' AND date_to <= '31-Dec-2003'



• The translation gives us the following relational algebra 
expression: 

πR.rid,R.type,R.priceσR.rid=B.rid∧B.hid=H.hid∧H.name=‘Hilton’ 

∧R.price>100(ρR(Room) × ρH(Hotel) × ρB(Booking))

SELECT R.rid, R.type, R.price
FROM Room R, Booking B, Hotel H
WHERE R.rid = B.rid AND B.hid = H.hid
AND H.name = 'Hilton' AND R.price > 100



Optimization 1

• First, we split the selections: 

πR.rid,R.type,R.priceσR.rid=B.ridσB.hid=H.hidσH.name=‘Hilton’σR.price>100 
(ρR(Room) × ρH(Hotel) × ρB(Booking))

And we push the selections:

πR.rid,R.type,R.priceσR.rid=B.rid(σR.price>100ρR(Room) × σB.hid=H.hid
(σH.name=0Hilton0 ρH(Hotel) × ρB(Booking)))



Optimization 2

• Then, the joins are recognized: 

πR.rid,R.type,R.price(

σR.price>100ρR(Room) ⋈ (

σH.name=‘Hilton’ ρH(Hotel) ⋈ ρB(Booking)

)

)



Optimization 3

• Finally, the projections are pushed:

πR.rid,R.type,R.price (

πR.rid,R.type,R.priceσR.price>100ρR(Room) ⋈ (

σH.name=‘Hilton’ ρH(Hotel) ⋈ ρB(Booking)

)

)



Exercise 2



Parameters to estimate the cost

• R: the name of the relation on disk

• B(R): number of blocks of R

• T(R): number of tuples of R

• V(R, a): number of distinct values in column a of R



Estimating the output
Equality: S = A=c (R) T(S) = T(R) / V(R,A)

Range: S = A<c (R) T(S) = T(R)/3

Inequality: S = Ac (R) T(S) = T(R)

Conjunction: S = C=c AND D=d(R) T(S) = T(R)/(V(R,C)*V(R,D))

Natural join: P = R(X,Y) ⋈ S(Y,Z) T(P) = T(R)*T(S)/max (V(R,Y),V(S,Y))

Duplicate elimination: T((R))= min[V(R,a1)*...*V(R,an), 1/2*T(R)] 



Exercise for size estimation

Estimate the sizes of relations that are the results of the 
following queries:

a) σa=10 (W)

b) σc=20 (W)

c) σ d>10 (Z)

d) σ a=1 AND b=2 (W)

e) W x Y

f) W ⋈ X ⋈ Y ⋈ Z

g) σ a=1 AND b>2 (W) ⋈ X

W (a,b) X (b,c) Y (c,d) Z (d,e)

T (W) = 100 T (X) = 200 T (Y) = 300 T (Z) = 400

V (W, a) = 20 V (X, b) = 50 V (Y, c) = 50 V (Z, d) = 40

V (W, b) = 60 V (X, c) = 100 V (Y, d) = 50 V (Z, e) = 100



Exercise 3



3. Cost of joins

• Consider the following relational schema and SQL query. The schema 
captures information about employees, departments, and company 
finances (organized on a per department basis).

• Schema:

Emp (eid, deptid, salary, hobby)

Dept (deptid, deptname, floor, phone)

Finance (deptid, budget, sales, expenses)

• Query:

SELECT D.name, F.budget

FROM Emp E, Dept D, Finance F

WHERE E.deptid = D.deptid AND Dept.deptid = F.deptid

AND and D.floor = 1 AND E.salary > 59000 AND E.hobby = ‘yodeling’



πD.name,F.budget

⋈

F
⋈

πdeptid

σ salary>59000 and hobby=‘yodeling’

E

π deptid, name

σ floor=1’

D

SELECT D.name, F.budget
FROM Emp E, Dept D, Finance F
WHERE E.deptid = D.deptid AND Dept.deptid = F.deptid
AND D.floor = 1 AND E.salary > 59000 AND E.hobby = ‘yodeling’

A. Identify a relational algebra tree that reflects the order of 
operations a decent query optimizer would choose.



• B. List the join orders (i.e., orders in which pairs of relations 
can be joined to compute the query. (Assume that the 
optimizer never considers plans that require the 
computation of cross-products). Briefly explain how you 
arrived at your list.

3 joins, can be executed in any order. We need to join 3 relations and for all of 
them the join attribute is deptid, so all join orders are valid - no Cartesian product

• (E ⋈ D) ⋈ F

• (D ⋈ F) ⋈ E 

• (E ⋈ F) ⋈ D

SELECT D.name, F.budget
FROM Emp E, Dept D, Finance F
WHERE E.deptid = D.deptid AND Dept.deptid = F.deptid
AND D.floor = 1 AND E.salary > 59000 AND E.hobby = ‘yodeling’



C. Suppose that the following statistics are available from the 
system catalog:

• Statistics:

1. Employee salaries range from 10,000 to 60,000.

2. Employees enjoy 200 different hobbies.

3. The company owns 2 floors of the building.

4. There are a total of 50,000 employees and 5,000 departments 
(each with the corresponding single entry in the Finance table) 

• The DBMS used by the company has only one join method 
available: block nested loop join.

SELECT D.name, F.budget
FROM Emp E, Dept D, Finance F
WHERE E.deptid = D.deptid AND Dept.deptid = F.deptid
AND D.floor = 1 AND E.salary > 59000 AND E.hobby = ‘yodeling’



• For each of the query’s relations (E, D, and F) estimate the 
number of tuples that would be initially selected from that 
relation if all non-join predicates were applied to them 
before any joining. Given your answer to the previous 
questions, which of the join orders produced in question B 
has the lowest estimated cost?

SELECT D.name, F.budget
FROM Emp E, Dept D, Finance F
WHERE E.deptid = D.deptid AND Dept.deptid = F.deptid
AND D.floor = 1 AND E.salary > 59000 AND E.hobby = ‘yodeling’



SELECT D.name, F.budget
FROM Emp E, Dept D, Finance F
WHERE E.deptid = D.deptid AND Dept.deptid = F.deptid
AND D.floor = 1 AND E.salary > 59000 AND E.hobby = ‘yodeling’

Given:

• T(D) = 5,000

• T(E) = 50,000

• T(F) = 5,000

• V(D, deptid) = 5,000

• V(E, hobby) = 200

• V (D, floor) = 2

A. (E ⋈ D) ⋈ F 
Estimating intermediate size of E ⋈ D:

83*2500/5000 = 42

(Note that though cardinality V(D’,deptID) =2,500 
after selection, not all deptid in E would join. So the 
total cardinality V(D, deptID) should remain 5,000)

B. (D ⋈ F) ⋈ E 
Estimating intermediate size (D ⋈ F) :

2500 * 5000 / 5000 = 2500

C. (E ⋈ F) ⋈ D 
Estimating intermediate size (E ⋈ F):

83*5000 / 5000 = 83

• The preferred join order is A

After selections the 
estimated table sizes are:
For E: 
50,000*1/3*1/200=83 tuples
For D: 
5,000/2 = 2500 tuples
F unchanged at 5,000 tuples


