
Algorithms: motivation
Lecture 01.01
by Marina Barsky

http://barsky.ca/marina

http://barsky.ca/marina

So what is an algorithm?

So what is an algorithm?

A Russian stamp showing

Persian mathematician

Muhammad ibn Musa Al-

Khwarizmi whose last name

was transliterated to

Algorithmi

Different definitions of an algorithm:

● an unambiguous specification of how to solve

a class of problems. Algorithms can perform

calculation, data processing and automated

reasoning Wikipedia

● a set of rules for solving a problem in a finite

number of steps, as for finding the greatest

common divisor Random House

● a procedure for solving a mathematical

problem in a finite number of steps that

frequently involves repetition of an operation

Merriam-Webster

● a process or set of rules to be followed in

calculations or other problem-solving

operations, especially by a computer Oxford

Algorithms?

1. Focus upon problem-solving, not just venting

2. Build quality relationships with supportive people

3. Practice gratitude

4. Be kind to yourself, rather than overly self-critical

5. Set meaningful goals

6. Build intrinsic motivation

Algorithm of happiness

1. Break information into small chunks

2. Intensively concentrate on each chunk for at least 20 minutes

3. Take a break to let new material settle

4. Create a visual metaphor/story about each new concept

5. Solve problems several times until stable connection in your brain is formed

Algorithm of success in STEM classes

Reference

https://www.goodreads.com/book/show/18693655-a-mind-for-numbers

Algorithms in living systems
(on biochemical hardware)

Code repository

Program execution

Algorithm LIFE

X←input()

If X=”tiger”
protein A=new Protein (TAAATA…)

Working copy of the code

AACCGCG
TTCGCCT

AAATATG
CATCGAT

Output protein sequence

A H W A H P P M T U V A T M

Sequence-dependent
folding

1. Implement an algorithm to create a living system which produces

a biodegradable plastic

2. Implement a bacteria which produces spider silk

3. ...

Imagine: engineering projects at UVic

Algorithm SPIDER_SILK
(bacterial genome,
silk protein sequence)

Algorithmic assignments of the future

But in this course
● We limit ourselves to algorithms for performing computational

tasks

● The algorithms should be very precise and unambiguous, so they

can be communicated to a machine

● Every computational problem is an algorithmic problem

def array_max(t):
max_val = None
for x in t:

if max_val is None or x > max_val:
max_val = x

return max_val

You were already using algorithms all the time!

Sample problem: compute max value in list t

Problems with straightforward
natural solutions

Display given text Total number of words Search for a given word

Linear scan

● Natural solution is already efficient (cannot do much better no matter

what)

We assume that you already know how to solve such problems,

and these algorithms are not covered in this course

Algorithmic problems

Shortest path Best student-to-dorm

assignment

Minimum number of operations to

convert one word into another

● Exhaustive search is not feasible
● Hard to do efficiently

These are the problems we study in this course

AI problems

Understand natural language Identify objects in

photographs

Play games

● Require an additional step: formally defining a computational problem
● Contain multiple sub-algorithms and heuristics

These problems are covered in courses

on AI/Machine Learning

Course mechanics

The course textbook is Introduction to Algorithms
by Cormen, Leiserson, Rivest and Stein (CLRS)

You will be assigned selected readings.
The book also covers data structures, which you are
already familiar with. We will review some of these next
week.

The book is classic and you can use it after this course
as a reference in your future work.

The course will be supplemented with selected chapters
from other books and online resources.

Introduction to Algorithms, 3rd Edition
By Thomas H. Cormen,
Charles E. Leiserson,

Ronald L. Rivest,
Clifford Stein

Materials

What language to use for algorithm implementation?

Considerations:

● C:
C is a bare language with no built-in data structures - thus we have an opportunity to
master the craft of building data structures from scratch. The language explicitly
operates on raw bytes: we have full control over memory and instructions.

● Java/C++:
You need to know main libraries, understand Object-Oriented paradigm, types, heap
and stack. Java especially is a bit too verbose for algorithm implementation.

● Python:
Clean and concise language, the closest to the pseudocode. We have no control over
memory and sometimes we get puzzling artefacts that we cannot fix. But for this
course - Python is the best choice.

Implementing algorithms

Homework assignments

There are 8 assignments in total.
Each assignment contains:

1. Problem-solving part which includes discussions, proofs and
pseudocode.

2. Experimental algorithmics. Implementations. Experiments.

You are allowed to submit up to one week late, with 40% late
submission penalty.

People who require accommodations need to set it up before
the assignment is published.
They will get a one-week extension without penalty.

Exams and final grades

There will be two exams in the course.
● The Midterm Exam will be held in class before the spring break.
● The Final Exam will be held during the exam period.

The final grades will be computed as follows
● In-calss Activities 10%
● Assignments 40%
● Midterm Exam 10%
● Final Exam* 40%

5% extra for in-class participation and engagement

*You have to score at least 40% on the final exam in order to pass the course

Why study algorithms?

Why study algorithms?

● Mastery of algorithms is required for all branches of Computer Science:

Cryptography? Networks? Graphics? Bioinformatics? AI?

● Algorithms play a key role in innovations of modern life

● Challenging yourself is good for the brain development

● Fun, addictive activity which can make you a better problem-solver in

general

Rubik cube solving algorithm

Programmers! you need efficient algorithms!

● Ancient consoles

● Mobile devices

● Browsers

● Big data ● Machine learning ● DNA analysis

Memory and processing power constraints

Ever more ambitious tasks

Skills you will develop

● Become a better programmer

● Sharpen your mathematical and analytical skills

● Start “thinking algorithmically”

● Literacy with computer science’s “greatest hits”

● Ace your google interview?

Algorithms that changed modern world

● Google search: page-rank

● Online banking: concurrent transactions

● Online payments: public-key cryptography

● Reliable communication: error-correcting codes

● GPS systems: shortest paths

Greatest Hits: RSA
Just for inspiration

Problem: sending secret messages

● Alice wants to send a secret message to Bob - such that only
Bob can read the message

● In order to make it possible, both Bob and Alice need to share
an encryption/decryption key

● If only Bob and Alice know the key, Eve cannot decipher the
secret message

How to deliver a separate secret key to every user of your online store?

Raw idea: padlock

Bob buys a lock, opens it, and
posts it for everyone to use

Public lock - private key

Alice picks up the lock,
writes a secret message,
puts it into a box, and
locks it with the lock

Public lock - private key

Alice picks up the lock,
writes a secret message,
puts it into a box, and
locks it with the lock

Public lock - private key

Eve cannot read the message,
because she does not know the key
combination (known only to Bob)

Public lock - private key

Only Bob knows the key.
He opens the box and
reads a secret message

Public lock - private key

Only Bob knows the key.
He opens the box and
reads a secret message

Did you see any physical open locks posted on the internet?

Idea: mathematical locks

● Bob generates a public key for everyone to use, and a private key

that only Bob knows.

● The public key can be applied to each message with ease.

● But the decryption is impossible without knowing some additional

information stored in the private key - and only Bob has this

information.

Mathematical locks: hypothetical example
Imagine that we live in the world where division by a number <10 is

computationally easy, but division by a number > 10 is prohibitively

expensive - impossible to accomplish in 1000 years.

Mathematical locks: hypothetical example
division by a number <10 easy

division by a number > 10 impossible in 1000 years.

● Bob generates a public encryption key by multiplying two numbers

5*3=15. This is a public key, that he posts for everyone to use.

Numbers 5 and 3 make the private key known only to Bob.

Mathematical locks: hypothetical example
division by a number <10 easy

division by a number > 10 impossible in 1000 years.

● Bob generates a public encryption key by multiplying two numbers

5*3=15. This is a public key, that he posts for everyone to use.

Numbers 5 and 3 make the private key known only to Bob.

● Alice wants to send a secret number 4. She multiplies it by 15 and

sends 60. Nobody (including Alice and Bob) knows an efficient

algorithm of dividing 60 by 15.

Mathematical locks: hypothetical example
division by a number <10 easy

division by a number > 10 impossible in 1000 years.

● Bob generates a public encryption key by multiplying two numbers

5*3=15. This is a public key, that he posts for everyone to use.

Numbers 5 and 3 make the private key known only to Bob.

● Alice wants to send a secret number 4. She multiplies it by 15 and

sends 60. Nobody (including Alice and Bob) knows an efficient

algorithm of dividing 60 by 15.

● But Bob knows that 15 is nothing else but 3*5. He knows it

because he created the key. Bob gets the message:

60 / 3 = 20, 20 / 5 = 4

Mathematical locks: hypothetical example
division by a number <10 easy

division by a number > 10 impossible in 1000 years.

● Bob generates a public encryption key by multiplying two numbers

5*3=15. This is a public key, that he posts for everyone to use.

Numbers 5 and 3 make the private key known only to Bob.

● Alice wants to send a secret number 4. She multiplies it by 15 and

sends 60. Nobody (including Alice and Bob) knows an efficient

algorithm of dividing 60 by 15.

● But Bob knows that 15 is nothing else but 3*5. He knows it

because he created the key. Bob gets the message:

60 / 3 = 20, 20 / 5 = 4

The only problem to solve: to find a real function that works this way!

RSA encryption

The RSA encryption idea is based on prime number factorization

https://www.khanacademy.org/computing/computer-
science/cryptography/modern-crypt/v/intro-to-rsa-encryption

http://doctrina.org/How-RSA-Works-With-Examples.html

(Rivest, Shamir, Adleman, since 2000)

https://www.khanacademy.org/computing/computer-science/cryptography/modern-crypt/v/intro-to-rsa-encryption
http://doctrina.org/How-RSA-Works-With-Examples.html

Prime factorization

Euclid: every number has only one prime factorization:

14 = 2*7

24 = 2*2*2*3

Prime factorization of large numbers

Euclid: every number has only one prime factorization:

14 = 2*7

24 = 2*2*2*3

What is the prime factorization of the following 100-digit number?
9,412,343,607,359,262,946,971,172,136,294,514,357,528,981,378,98
3,082,541,347,532,211,942,640,121,301,590,698,634,089,
611,468,911,681

Prime factorization of large numbers

What is the prime factorization of the following 100-digit number?
9,412,343,607,359,262,946,971,172,136,294,514,357,528,981,378,98
3,082,541,347,532,211,942,640,121,301,590,698,634,089,
611,468,911,681

It is:

86,759,222,313,428,390,812,218,077,095,850,708,048, 977
*
108,488,104,853,637,470,612,961,399,842,972,948,409,834,611,525,
790,577,216,753

• There are no other factors: these two factors are prime

• Finding them is quite a job: in fact, it’s a several-month project for a
supercomputer

Totient function

Euler: totient function φ(n) (/faɪ/)

counts how many integers smaller than n have the Greatest Common

Divisor (GCD) with n equal to 1 (have no common divisors except 1).

Two numbers m and n for which GCD(m,n) = 1 are called co-primes

n=8

1,2,3,4,5,6,7 → φ(8) = 4

Totient function of a prime number

Euler: totient function φ(n) (/faɪ/)

counts how many integers smaller than n have the Greatest Common

Divisor (GCD) with n equal to 1.

If the number n is a prime, then φ(n) = n - 1

n=11 → all n-1 are co-primes: 1,2,3,4,5,6,7,8,9,10

Euler proved that:

φ(n*m) = φ(n)*φ(m), if both n and m are distinct primes

5

1,2,3,4

φ(5)=4

15

1,2,3,4,5,6,7,8,9,10,11,12,13,14

3

1,2

φ(3)=2

Totient function of a prime number

Euler: totient function φ(n) (/faɪ/)

counts how many integers smaller than n have the Greatest Common

Divisor (GCD) with n equal to 1.

If the number n is a prime, then φ(n) = n - 1

n=11 → all n-1 are co-primes: 1,2,3,4,5,6,7,8,9,10

Euler proved that:

φ(n*m) = φ(n)*φ(m), if both n and m are distinct primes

5

1,2,3,4

φ(5)=4

15

1,2,3,4,5,6,7,8,9,10,11,12,13,14

φ(15)=8

3

1,2

φ(3)=2

Euler theorem

Euler theorem:

For any two numbers n, x which are co-prime (do not share common

divisors):

xφ(n) ≡ 1 (mod n)

Meaning: xφ(n) mod n = 1

(xφ(n) divided by n gives a remainder 1)

Euler theorem: examples

Euler theorem:

For any two numbers n, x which are co-prime:

xφ(n) mod n = 1

For example let's say n=8

1,2,3,4,5,6,7

Then φ(n) = 4

Which number is a co-prime of 8?

Let x=3. 34 mod 8 = 81 mod 8 = 1

Let x=9. 94 mod 8 = 6561 mod 8 = (820*8 + 1) mod 8 = 1

Euler theorem: k times

Euler theorem:

For any two numbers n, x which are co-prime (do not share common

divisors):

xφ(n) ≡ 1 (mod n) (1)

Meaning: xφ(n) mod n = 1

(xφ(n) divided by n gives a remainder 1)

If we multiply both sides of equation (1) by itself k times we get:

xkφ(n) ≡ 1k (mod n)

which means:

xkφ(n) mod n = 1 (if x is co-prime of n then so is xk)

We can get x back from xφ(n)

Euler theorem:

For any two numbers n, x which are co-prime:

xkφ(n) mod n = 1

xkφ(n) mod n = 1

*x (multiply both sides by x)

x* (xkφ(n) mod n) = x

Meaning: remainder from division of xφ(n)+1 by n is x!

xkφ(n)+1 mod n = x

RSA: encryption
Euler theorem:

For any two numbers n, x which are co-prime:

xkφ(n)+1 mod n = x

Say we create 2 public keys: e and n

Then to encrypt the secret number x use:

xe mod n → y

RSA: decryption
Euler theorem:

For any two numbers n, x which are co-prime:

xkφ(n)+1 mod n = x

To encrypt the secret number x we used:

xe mod n → y

To get x back from y use Euler theorem:

x(kφ(n)+1)/e mod n → x

The decryption exponent d is computed as d=(kφ(n)+1)/e

This can be done easily - but only if we know φ(n)

RSA: why we cannot break it

The decryption exponent is computed as d=(kφ(n)+1)/e

This can be done easily - but only if we know φ(n)

● Let n be a multiplication of 2 100-digit primes p1 and p2

● If n is a multiplication of 2 large primes, then any small integer will

be a co-prime of n

● Then everyone can compute the decryption exponent easily, but

only if they know the original primes: φ(n) = (p1-1)(p2-1)

● If they do not know the original primes, it is not feasible to

compute function φ(n) just by knowing n.

● Because it involves either computing prime factorization of n, or

common divisors of n with every number < n. Both are

computationally hard.

RSA example: Bob wants to receive secrets

● Bob picks 2 “large” prime numbers p1= 3 and p2= 5
● Generates a public key: n=3*5 = 15
● Computes φ(n) = (3−1)(5−1) = 8 and keeps it to himself
● Chooses encryption exponent e to be a random prime

number less than φ that is also not a divisor of φ
k*φ(n)+1 should be divisible by e → chooses e=3 (k=1)

● Computes decryption exponent d = (1φ(n)+1)/e,
(8+1)/3 = 3 and keeps it private

RSA example: public key

Bob posts n=15, e=3
as a public lock:

xe mod n

RSA example: public encryption

Only Bob
knows
decryption
exponent d = 3

n=15, e=3

Alice wants to send number 7

She sends encrypted
y = 73 mod 15 = 13

13

7

power mod calculator

https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html

RSA example: message is safe

n=15, e=3

y = 13 circulates over the internet in open

Eve has no way of computing an original
message x from y

13

7

RSA example: decrypting the message

n=15, e=3

Bob receives y = 13 and decrypts it using
private key d=3:

x = yd mod n = 133 mod 15 = 7

13

7

Class activity: RSA experience

Power mod calculator:

https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html

https://www.mtholyoke.edu/courses/quenell/s2003/ma139/js/powermod.html

What we learned from this experience
● Intuitive ideas are often simple (padlock)

● Every physical idea can be made abstract with the help of math

(finding asymmetrical function which is easy to do one way but

hard to reverse)

● Computer is a tool that allow us to materialize the most abstract

ideas and change the real life

RSA encryption: summary

● All arithmetic is done modulo n, with n=pq where p and q are large

primes.

● Decryption in this system relies on computing Euler's phi function,

φ(n), which is hard to compute (hence the system is hard to break)

unless you know the prime factorization of n (which is also hard to

compute unless you know it upfront)

● Do not implement RSA by yourself: use a library

● But finding if two numbers are co-primes? Prime factorization?

We can try

xe mod n = y hard to reverse: xe = y + kn
Easy to recover x = yd mod n, where d = (1φ(n)+1)/e

https://www.openssl.org/

“If I have perchance omitted anything more or less proper or

necessary, I beg indulgence, since there is no one who is blameless

and utterly provident in all things.”

Leonardo of Pisa a.k.a. Fibonacci (1170–c1250),

a remarkable Italian mathematician,

the author of Liber Abaci (“The Book of Calculation”), one of the

most consequential mathematical book in history

To do list
● Find the main textbook

● Brush up your Python skills

● Review course syllabus and prepare your questions for the next

meeting

● Fill in the following form: https://forms.gle/5HLM3rv9uzZgxZL3A

https://docs.google.com/document/d/11aNddHrPjS3iCwju1tAEGHUFvVKs9dkDknjasUEYyiQ/edit?usp=sharing
https://forms.gle/5HLM3rv9uzZgxZL3A

