Exploring Big-Oh
 Lecture 01.03

by Marina Barsky

[Big Oh formally]

$f(n)=\boldsymbol{O}(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0} the value of $f(n)$ always lies on or below c. $g(n)$

For Big-O Notation analysis, we care more about the part that grows fastest as the input grows, because everything else is quickly eclipsed as n gets very large

[Why Big Oh - and not Big Theta]

- Theta represents a tight bound on the performance of the algorithm - it is the best characteristic of the running time.
- BUT: It is not easy to find a single bounding function $g(n)$ that bounds $f(n)$ both from above and from below for all possible inputs:

For example: bubble sort is not always $>=c_{2} n^{2}$, that is $f(n) \neq \Theta\left(n^{2}\right)$

- It is easier to give an upper bound, which might not always be tight, but is easier to find.

[Big Oh -the rate of growth]

- We use Big O Notation to talk about how quickly the runtime grows
- Big O guarantees that for a given input size n the algorithm never exceeds the value some function on n
- Big O bounds the speed of growth from above: so we can say things like the runtime grows "on the order of the size of the input" $(\mathrm{O}(\mathrm{n})$) or "on the order of the square of the size of the input" $\left(O\left(\mathrm{n}^{2}\right)\right)$

Big Oh - in practice

$f(n)=\boldsymbol{O}(g(n))$ if there are positive constants n_{0} and c such that to the right of n_{0} the value of $f(n)$ always lies on or below $c \cdot g(n)$

Big-oh is an upper bound that does two things:

- Removes lower order (ie slower growing) terms.
- Removes constant factors.

Example: Let's show that $f(n)=1 / 2 n^{2}+3 n \leq \mathrm{cn}^{2}$
Divide both sides by n^{2}
$1 / 2+3 / n \leq c$
Then, starting with $\mathrm{n}_{0}=6$ and any $\mathrm{c} \geq 1, \mathrm{f}(\mathrm{n}) \leq \mathrm{cn}^{2}$
Let $\mathrm{c}=2$, then $\mathrm{f}(\mathrm{n})<2 \mathrm{n}^{2}$ for any $\mathrm{n}>6, f(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$

Classifying algorithms with Big-Oh

Doubly-Exponential Functions: $2^{2^{n}}$
Exponential Functions: $2^{n}, 3^{n}, n \cdot 2^{n}$
Polynomial Functions: $n, n^{2}, n^{3}, n^{2} \cdot \log (n), \sqrt{ } n=n^{0.5}$
Logarithmic Functions: $\log (n)=\log _{2}(n), \log _{3}(n)$
Doubly-Logarithmic Functions: $\log \log n=\log _{2}\left(\log _{2}(n)\right)$

Big Oh matters

n bytes	$\log \mathrm{n}$	n	n^{2}	
10 B	1	10	100	$\sim 1^{*} 10^{3}$
100 B	2	100	10000	$\sim 1^{*} 10^{30}$
1 KB	3	1,000	1000000	$\sim 1^{*} 10^{300}$
10 KB	4	10,000	100000000	$\sim 1 * 10^{3000}$
100 KB	5	100,000	10000000000	$\sim 1^{*} 10^{30,000}$
1 MB	6	$1,000,000$	$1.00 \mathrm{E}+12$	$\sim 1 * 10^{300,000}$
10 MB	7	$10,000,000$	$1.00 \mathrm{E}+14$	n / a
100 MB	8	$100,000,000$	$1.00 \mathrm{E}+16$	n / a
1 GB	9	$1,000,000,000$	$1.00 \mathrm{E}+18$	n / a
10 GB	10	$10,000,000,000$	$1.00 \mathrm{E}+20$	n / a
100 GB	11	$100,000,000,000$	$1.00 \mathrm{E}+22$	n / a
1 TB	12	$1,000,000,000,000$	$1.00 \mathrm{E}+24$	n / a

CPU with a clock speed of 2 gigahertz (GHz) can carry out two thousand million ($\mathbf{2}^{*} \mathbf{1 0}^{\mathbf{9}}$) cycles (operations) per second.

- Algorithm which runs in $\mathrm{O}\left(2^{n}\right)$ time will process 1 KB of input in $\sim 10^{22}$ years (more than 7 millenia)
- Processing 1 GB of input will take $<\mathbf{0 . 0 0 1} \mathrm{ms}$ by $\mathrm{O}(\log \mathrm{n})$ algorithm, < 1 sec by $\mathrm{O}(\mathrm{n})$ algorithm, and >32 years by $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm

Reasoning about time complexity

- When you intuitively understand an algorithm, the reasoning about the run-time of an algorithm can be done in your head
- But it is usually much easier to estimate complexity given a precise-enough pseudocode

Big Oh: Multiplication by Constant

Multiplication by a constant does not change Big Oh:

The "old constant" C from the Big Oh becomes $c \cdot C$

$$
\mathrm{O}(\mathrm{c} \cdot \mathrm{f}(\mathrm{n})) \rightarrow \mathrm{O}(\mathrm{f}(\mathrm{n}))
$$

Big Oh: Multiplication by Function

- But when both functions in a product depend on n, both are important
- This is why the running time of two nested loops is $O\left(n^{2}\right)$.

$$
\mathrm{O}(\mathrm{f}(\mathrm{n})) \cdot \mathrm{O}(\mathrm{~g}(\mathrm{n})) \rightarrow \mathrm{O}(\mathrm{f}(\mathrm{n}) \cdot \mathrm{g}(\mathrm{n}))
$$

Loops

The running time of a loop is, at most, the running time of the statements inside the loop (including if tests) multiplied by the number of iterations.

```
m:= 0
for i from 1 to n:
#repeat n times
    m:= m + 2 #constant time c
```

Total time $=$ constant $\mathrm{c} \times \mathrm{n}=\mathrm{c} \mathrm{n}=\mathrm{O}(\mathrm{n})$.

Nested loops

Analyze from the inside out. Total running time is the product of the sizes of all the loops.
for i from 1 to n : for j from 1 to n : $k:=k+1$
\# outer loop - n times
\# inner loop - n times
\# constant time

Total time $=c \times n \times n=n^{2}=O\left(n^{2}\right)$.

Consecutive statements

Add the time complexity of each statement.

$$
\begin{aligned}
& x:=x+1 \\
& \text { for } i \text { from } 1 \text { to } n: \\
& \quad m:=m+2
\end{aligned}
$$

for i from 1 to n : for j from 1 to n : $\mathrm{k}:=\mathrm{k}+1$
\# constant time
\# executes n times
\# constant time
\# outer loop - n times
\# inner loop - n times
\# constant time

Total time $=c_{0}+c_{1} n+c_{2} n^{2}=O\left(n^{2}\right)$.

If-then-else statements

Worst-case running time: the test, plus either the then part or the else part (whichever is the larger).
if len(t) = 0: return false
\# test: constant
\# then part: constant c0
else:

```
for n from 0 to len(t): # else part: (c1+c2)*n
        if t[n] = p[n]: # if: c1 + c2 (no else)
        return false
```

 return true
 Total time $=\mathrm{c}_{0}+\left(\mathrm{c}_{1}+\mathrm{c}_{2}\right) * \mathrm{n}=\mathrm{O}(\mathrm{n})$.

Logarithmic complexity

An algorithm is $O(\log n)$ if it takes a constant time to cut the problem size by a fraction (usually by $1 / 2$).

$$
\begin{aligned}
& \text { i:= } \\
& \text { while } i<=n: \\
& \quad i:=i^{*} 2
\end{aligned}
$$

- If we observe carefully, the value of i is doubling every time: Initially $\mathrm{i}=1$, in next step $\mathrm{i}=2$, and in subsequent steps $i=4,8$ and so on

Logarithmic complexity

An algorithm is $O(\log n)$ if it takes a constant time to cut the problem size by a fraction (usually by $1 / 2$).

$$
\begin{aligned}
& i:=1 \\
& \text { while } i<=n: \\
& \quad i:=i^{*} 2
\end{aligned}
$$

- Let us assume that the loop is executing some k times before i becomes > n
- At k -th step $2^{\mathrm{k}}=\mathrm{n}$, and at $(k+1)$-th step we come out of the loop
- Taking logarithm on both sides:

$$
\begin{aligned}
& \log \left(2^{k}\right)=\log n \\
& k \log 2=\log n \\
& k=\log n
\end{aligned}
$$

Logarithmic complexity

The same logic holds for the decreasing sequence as well:

$$
\begin{aligned}
& \mathrm{i}:=\mathrm{n} \\
& \text { while } \mathrm{i}>=1: \\
& \quad \mathrm{i}:=\mathrm{i} / 2
\end{aligned}
$$

Example: binary search (finding a word in a sorted list of size n)

- Look at the center point in the sorted list
- Is the word towards the left or right of center?
- Repeat the process with the left or right part of the list until the word is found.

Commonly used Logarithm Rules

Rule or special case	Formula
Product	$\log (x y)=\log (x)+\log (\mathrm{y})$
Quotient	$\log (\mathrm{x} / \mathrm{y})=\log (\mathrm{x})-\log (\mathrm{y})$
Log of power	$\log \left(\mathrm{x}^{\mathrm{y}}\right)=\mathrm{ylog}(\mathrm{x})$
Log of one	$\log (1)=\mathrm{o}$
Log reciprocal	$\log (1 / \mathrm{x})=-\log (\mathrm{x})$
Changing base	$\log _{10}(\mathrm{x})=\log _{2}(\mathrm{x}) / \log _{2}(10)$

Base of the logarithm does not matter in complexity analysis!

Commonly used summations

Arithmetic series

$\sum_{k=1}^{n} k=1+2+\ldots+n=\frac{n(n-1)}{2}=O\left(n^{2}\right)$

Geometric series

$$
\begin{aligned}
& \sum_{k=0}^{n} x^{k}=1+x+x^{2}+\cdots+x^{n}=\frac{x^{n+1}-1}{x-1}=O\left(x^{n+1}-1\right)= \\
& O\left(x^{n}\right), x \neq 1
\end{aligned}
$$

x is a constant, for example 2.
If $x<1$, then the above sum $=1 /(1-x) \leq 2=O(1)$.
Harmonic series
$\sum_{k=1}^{n} \frac{1}{k}=1+\frac{1}{2}+\frac{1}{3} \ldots+\frac{1}{n}=O(\log n)$

Example: reasoning about complexity

Algorithm2(n)
$\mathrm{i} \leftarrow 1$
$\mathrm{~s} \leftarrow 1$
while $\mathrm{s}<=\mathrm{n}:$
$\mathrm{i} \leftarrow \mathrm{i}+1$
$\mathrm{~s} \leftarrow \mathrm{~s}+\mathrm{i}$

- i is going through $1,2,3$...
- Our goal is to determine how many times i should increase until s hits n : let's call this number k
- s on the other hand contains a sum of $1+2+3+\ldots k=\mathrm{O}\left(k^{2}\right)$
- So when $k^{2}=n$ the loop stops
- Thus after $k=V n$ steps the algorithm terminates \rightarrow the complexity of the algorithm is $\mathrm{O}(\mathrm{V} n)$

Real-life performance

- How do we compare algorithms which belong to the same bigOh class?
- Some of them may contain a very large constant: but we already got rid of all constants in our analysis
- Some of the algorithms may use a faulty data structure: an example would be an ancient version of the Sieve of Eratosthenes, where we removed an element from the middle of the list: expensive operation
- The implementation quality and the programming language also matter:
good implementation can make an algorithm run for up to 1000 times faster for the same input
- For these reasons, we run comparative performance tests

Class activity 4

Big 0

