
Data structures: motivation

❏ The choice of a suitable data structure can make all the
difference between an efficient and a failing program

❏ The input and output of any algorithm is stored inside a
data structure

❏ Data structures organize data for quick and efficient access

Abstract Data Types and
Data structures

[Review 02.01]
by Marina Barsky

Abstract Data Type (ADT):
result of the process of abstraction

❑ A specification of data to be stored together with a set of
operations on that data

❑ ADT = Data + Operations

Abstraction

➢ Abstraction - the process of extracting only essential
property from a real-life entity

➢ In CS: Problem → storage + operations

Definition

ADT is a mathematical concept
(from theory of concepts)

ADT is a language-agnostic concept

❑ Different languages support ADT in different ways

❑ In C++ or Java, use class construct to create a new ADT

ADT includes:

❑ Specification:

▪ What needs to be stored

▪ What operations are supported

❑ Implementation:

▪ Data structures and algorithms used to meet the specification

ADT: Specification vs.
implementation

Specification and implementation have to be disjoint:

❑ One specification

❑ One or more implementations

▪ Using different data structures

▪ Using different algorithms

[Example 1: Abstraction for HR roster]

We want to model a list of company employees

➢ When the company grows - we should be able to add a
new employee

➢ When the company downsizes we should be able to
remove the last-added employee (seniority principle)

[Abstraction of HR roster: Stack]

➢ If these are the only important requirements to
the HR roster, then we can solve this problem
using Stack Abstract Data Type

➢ Stack stores a list of elements and allows only
2 operations: adding a new element on top
of the stack and removing the element
from the top of the stack

➢ Thus, the elements are sorted by the time
stamp - from recent to older

➢ Stack is also called a LIFO queue (Last In -
First Out)

A

B

C

Top

1

2

3

3

2

1

Stack: Abstract Data Type which supports following

operations:

➢ Push(e): adds element to collection
➢ Top(): returns most recently-added element

➢ Pop(): removes and returns most recently-added

element

➢ Boolean IsEmpty(): are there any elements?

➢ Boolean IsFull(): is there any space left?

Specification of Stack ADT

[Stack ADT: possible Data Structures]

Array Impl. Link. List Impl.

Push(e) O(1) O(1)

Top() O(1) O(1)

Pop() O(1) O(1)

IsEmpty() O(1) O(1)

IsFull() O(1) O(1)

Considerations: Linked Lists have storage overhead
Arrays need to be resized when full

[Example 2: Abstraction of ER Queue]

We want to model a list of patients waiting in the Hospital ER

➢ When a new patient arrives - we should be able to add
him to the queue

➢ When the doctor calls for the next patient, we should
be able to remove the patient from the front of the
queue

[Abstraction of ER Queue: Queue]

➢ If these are the only two required operations, then we
can model the ER queue using a Queue ADT

➢ As in the Stack ADT, the elements in the Queue are
also sorted by timestamp, but in a different order:
from the earlier to the later

➢ This ADT is called a FIFO Queue (First In First Out)

A B C RearFront

1 2 3

Queue: Abstract Data Type which supports the

following operations:

➢ Enqueue(e): adds element e to collection

➢ Dequeue(): removes and returns least recently-

added key

➢ Boolean IsEmpty(): are there any

elements?

➢ Boolean IsFull(): is there any space left?

Specification of Queue ADT

[Queue Implementation with
Linked List]

➢ Augment Linked List with the tail pointer

➢ For Enqueue(e) use list.add(e) - which adds an

element at the end

➢ For Dequeue() use list.remove(list.head)

➢ For IsEmpty() use (list.head = NULL?)

[Queue implementation with
Circular Array]

Enqueue(g)

0

1

23

4

2

read

1

write

f c d e

[Queue ADT: possible Data Structures]

Link. List Impl. with tail Array Impl.circular

Enqueue (e) O(1) O(1)

Dequeue() O(1) O(1)

IsEmpty() O(1) O(1)

Considerations:
Linked Lists have unlimited storage
Arrays need to be resized when full
Linked Lists have simpler maintenance

Hide implementation details
from users of ADT

Users of ADT:

❑ Aware of the specification only

▪ Usage only based on the specified operations

❑ Do not care / need not know about the actual implementation

▪ i.e. Different implementations do not affect the users of ADT

A Wall of ADT
❑ ADT operations provide:

❑ Interface to data structures

❑ Secure access

Impenetrable wall

❑ User programs should not:

❑ Use the underlying data structure directly

❑ Depend on implementation details

class Stack {

Public push(int n) {

...

}

Specification as slit in the wall

❑ User only depends on specifications:

❑ Function name, parameter types, and return type

Request of

operation

push(4)

Result of

operation

s contains 4 Implementation

int main() {

Stack s;

s.push(4);

s.pop();

return s.isEmpty();

}

User of Stack

Advantages of ADT

❑ Hide the implementation details by building walls around the
data and operations

▪ So that changes in either will not affect other program
components that use them

❑ Functionalities are less likely to change

❑ Localize rather than globalize changes

❑ Help manage software complexity

Activity 5. Algorithm design ideas

In preparation for Assignment 2

Balanced brackets

Input: A string str consisting of '(', ')', '[', ']','{', '}'

characters.

Return whether or not the string’s

parentheses and brackets are

balanced.

Output:

Problem 1

Balanced:

“([])[]()”,

“((([([])]))())”

Unbalanced:

“(]()”

“][”

“([)]”

Examples

Maintaining max

Input: A list of numbers stored in the Stack

which supports the usual push and pop

operations in time O(1)

Max value currently in the Stack in time

O(1)

Output:

Problem 2

