ADT and Data structures. Priority Queue

[Review 02.02] *by Marina Barsky*

- A priority queue is a generalization of a queue where each element is assigned a priority and elements come out in order of priority
- If the priority is the earliest time they were added to the queue then priority queue becomes a regular queue
- We are interested in a case when priority of each element is not related to the time when the element was added to the queue

Specification of Priority Queue ADT

Priority Queue is an Abstract Data Type supporting the following main operations:

- → top() get an element with the highest priority
- → enqueue(e,p)* adds a new element with priority p
- → dequeue() removes and returns the element with the highest priority

*To simplify the discussion we use *enqueue(e)*, where *e* is a number which reflects the priority

Priority Queue: possible Data Structures

	enqueue	dequeue
Unsorted array/list	O(1)	O(n)
Sorted array/list	O(n)	O(1)

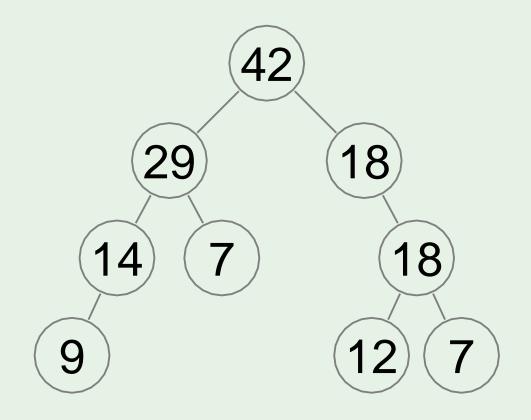
[Binary max-heap]

Definition

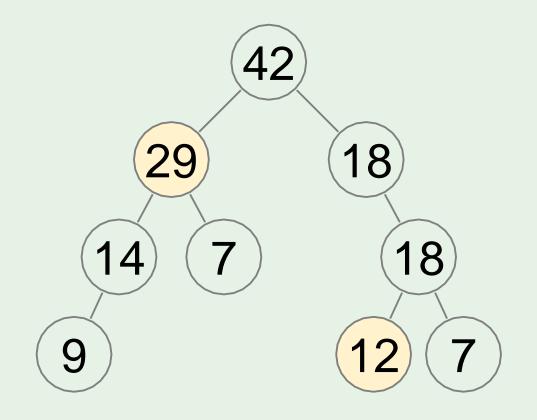
Binary max-heap is a **binary** tree (each node has zero, one, or **two** children) where the value of each node is at least the values of its children.

https://visualgo.net/en/heap?slide=1

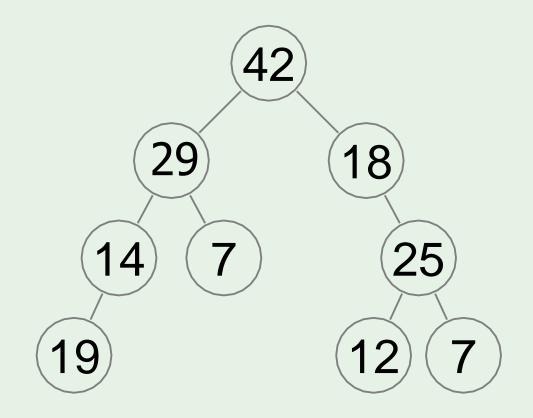
Heap?



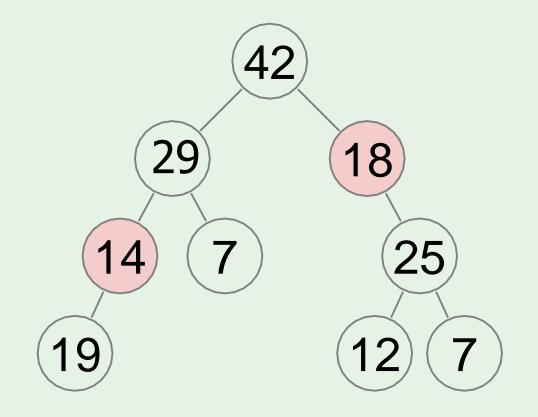
Heap? Yes



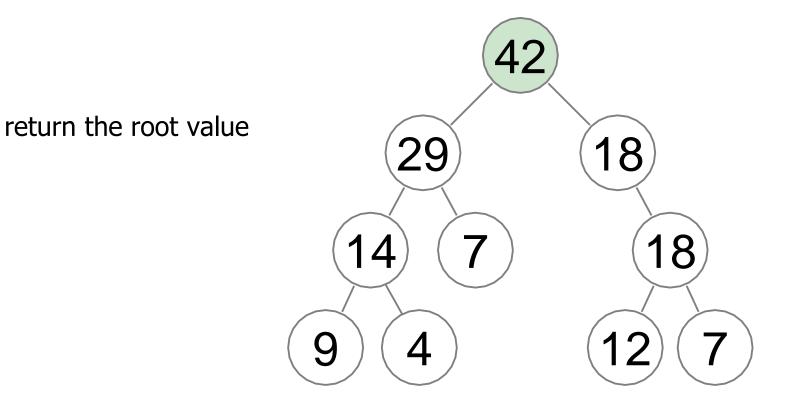
Heap?



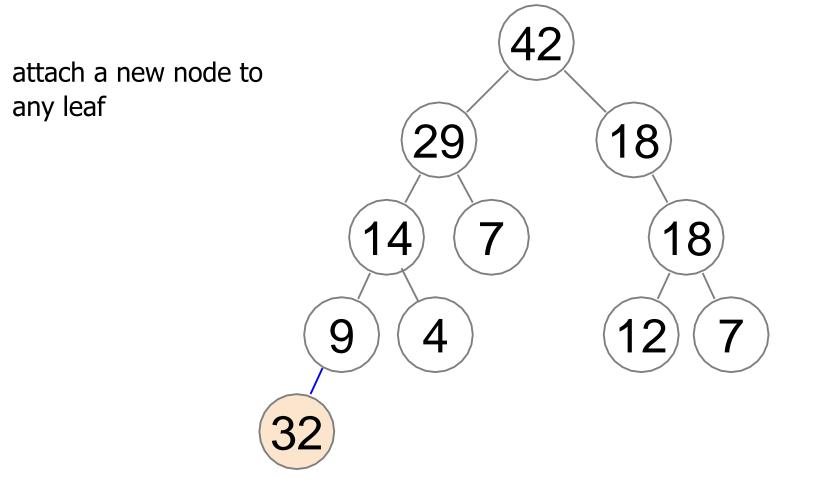
Heap? No

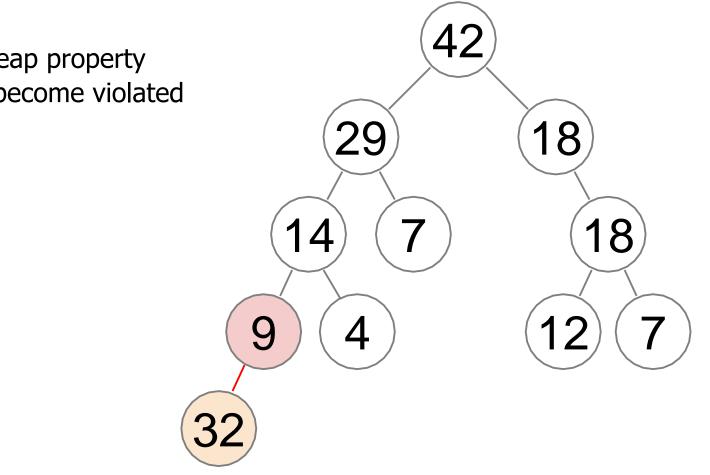


Heap operations: top

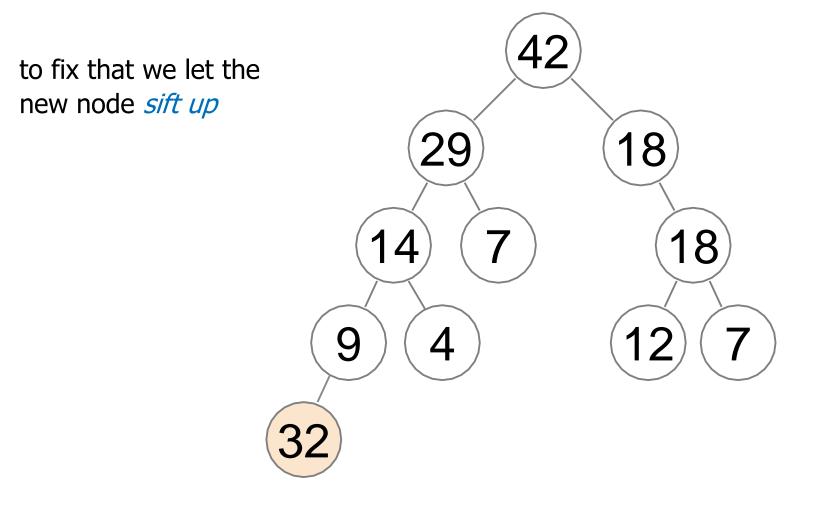


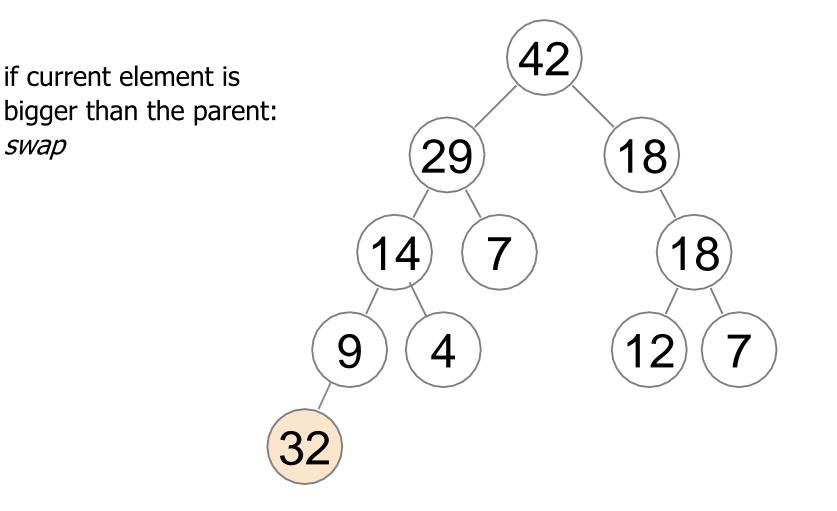
Run-time: O(1)

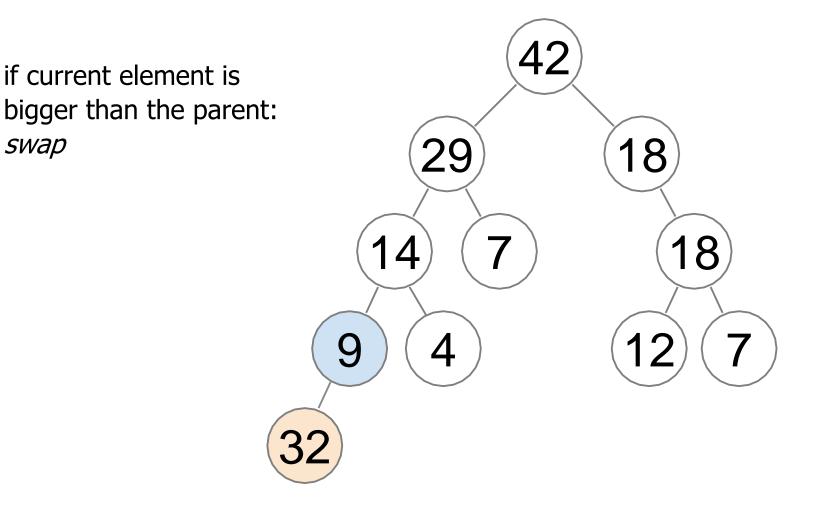


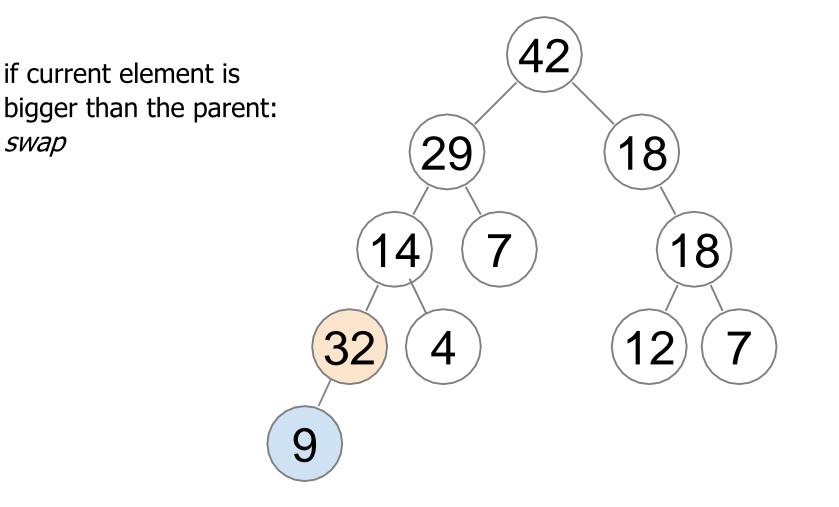


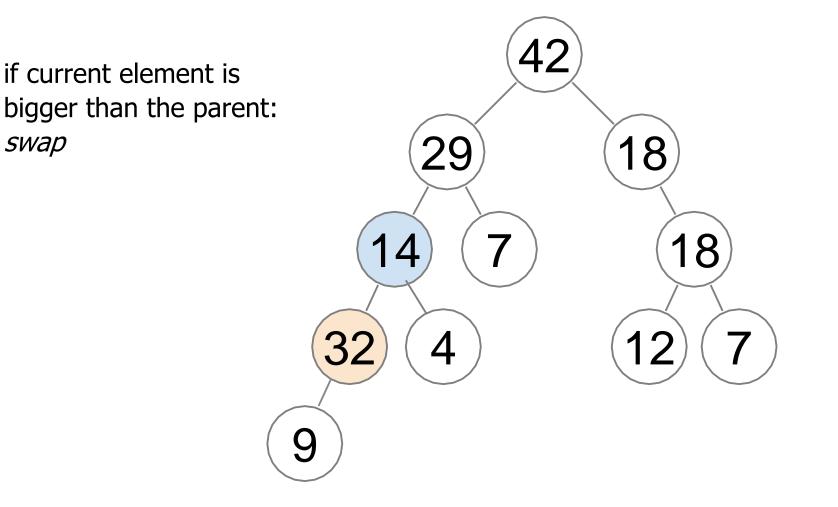
the heap property may become violated



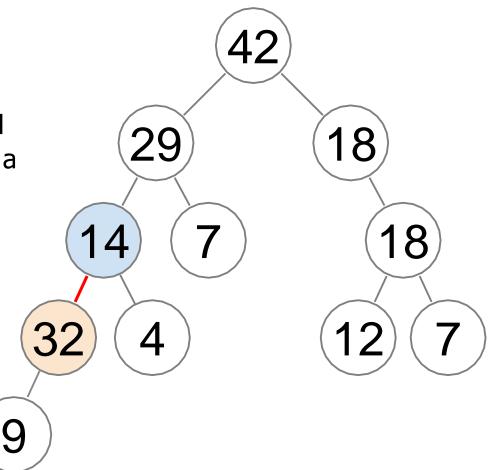


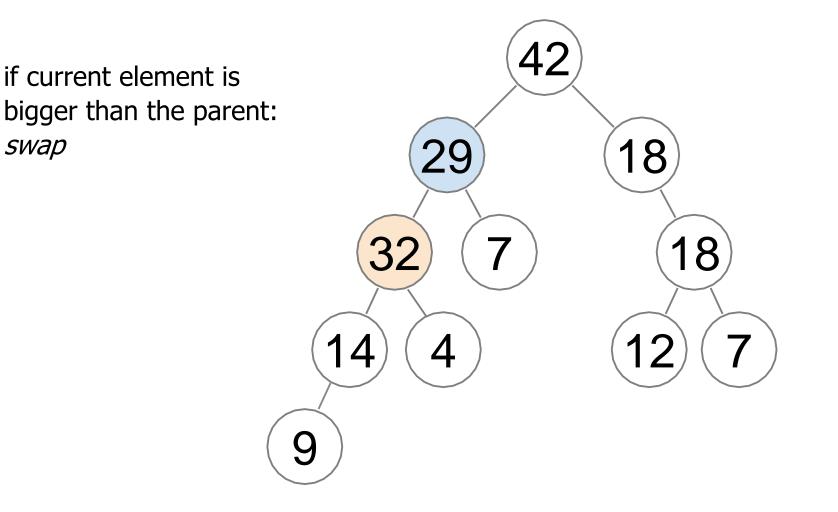


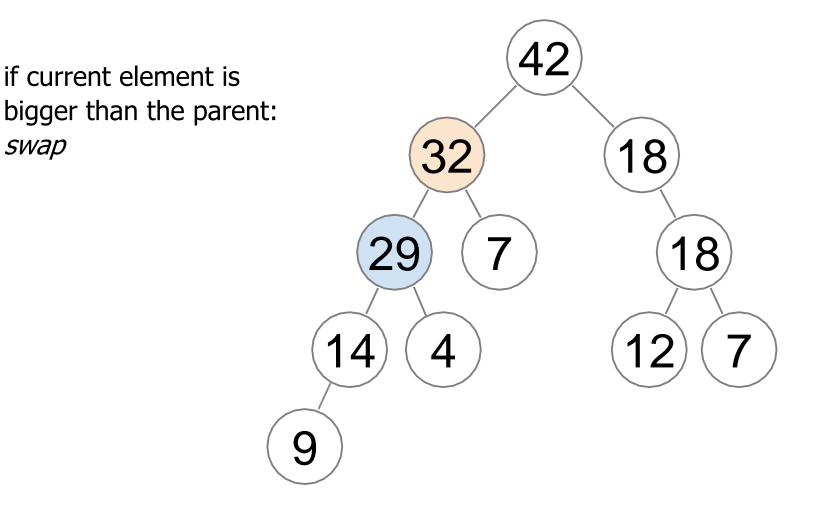




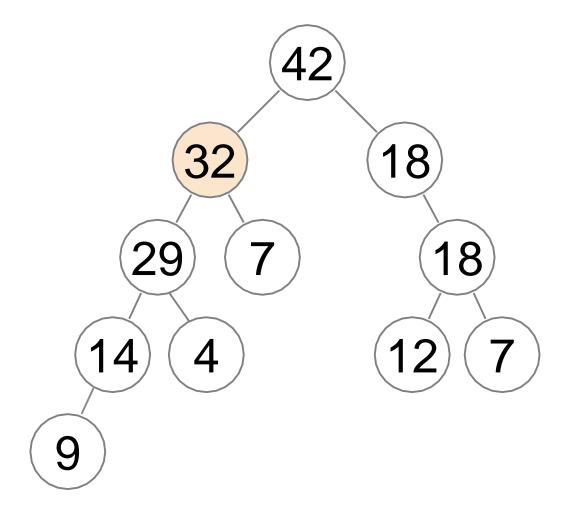
this works because the heap property is violated only on a single edge at a time



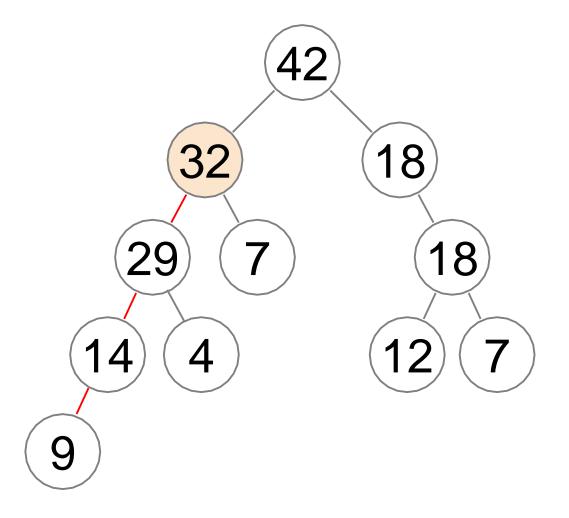




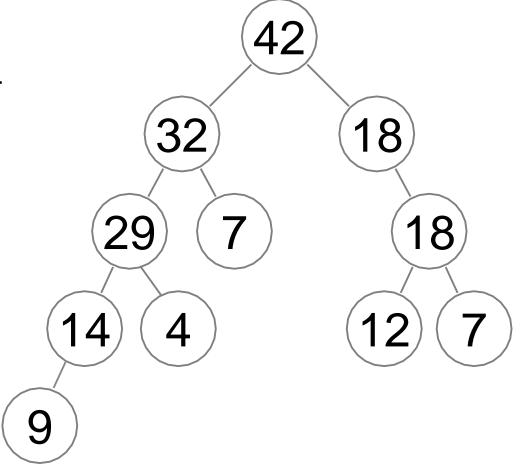
heap property is restored



running time of *enqueue* depends on how many times we need to *swap*

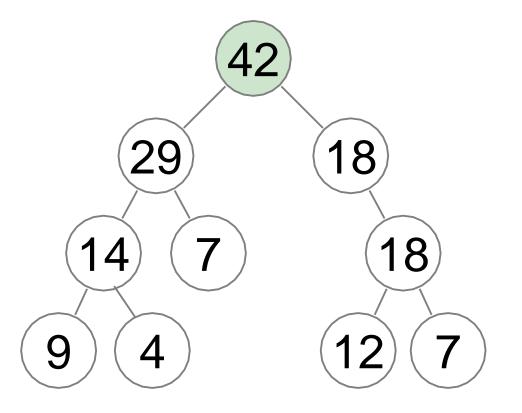


with each swap, the problematic node moves one node closer to the root

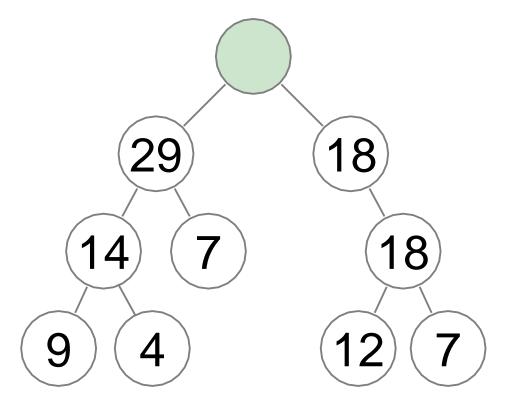


running time: O(tree height)

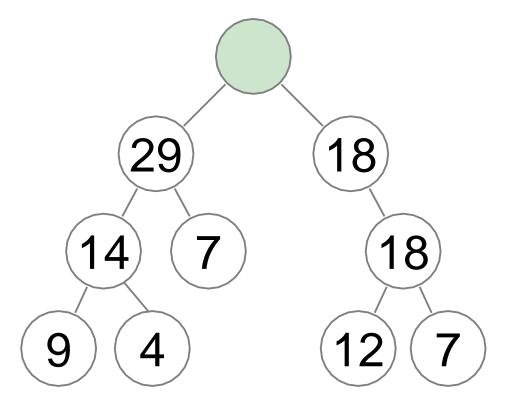
remove and return the root value



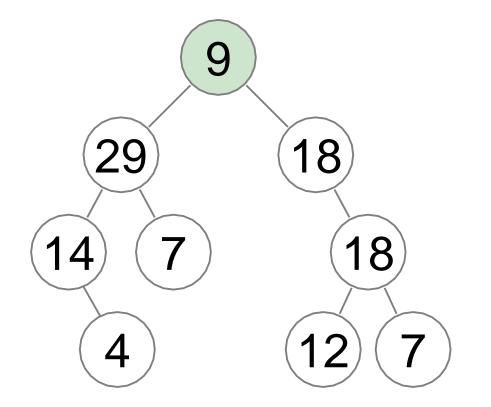
remove the root value



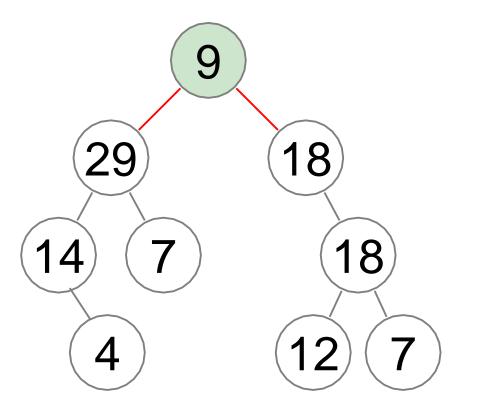
replace the empty node value with any leaf node value and remove the leaf



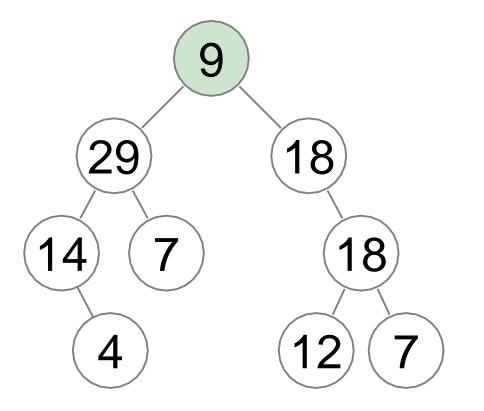
replace the empty node value with any leaf node value and remove the leaf



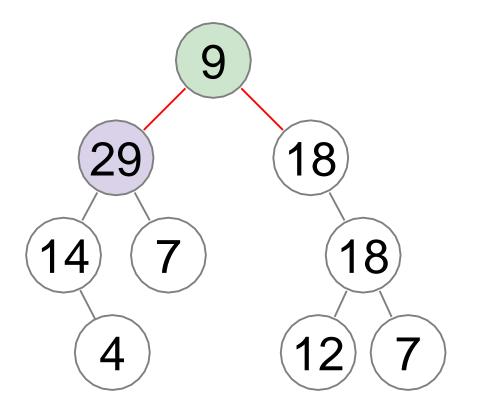
again, this may violate the heap property



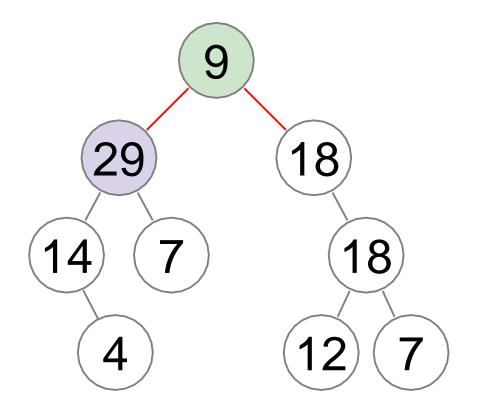
to fix it we let the problematic node *sift down*



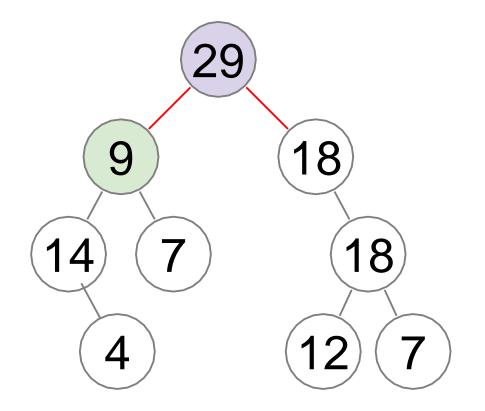
if current node is smaller than one of its children, swap it with the largest child



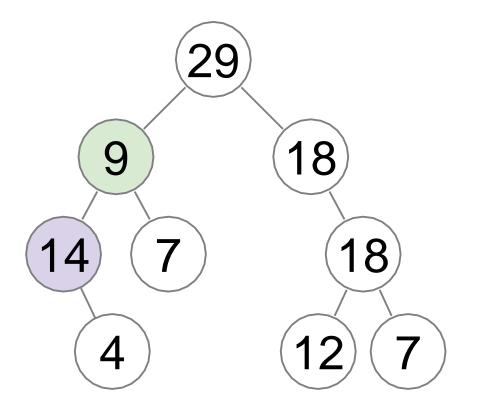
swapping with the largest child automatically restores both broken edges



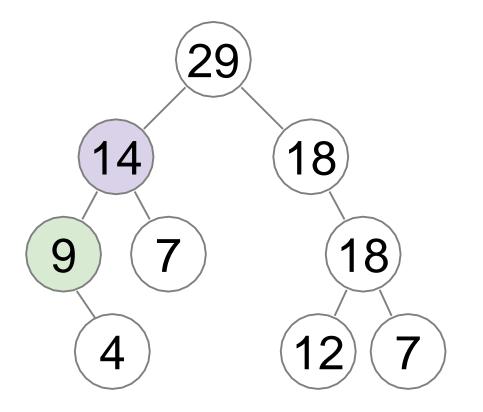
swapping with the largest child automatically restores both broken edges



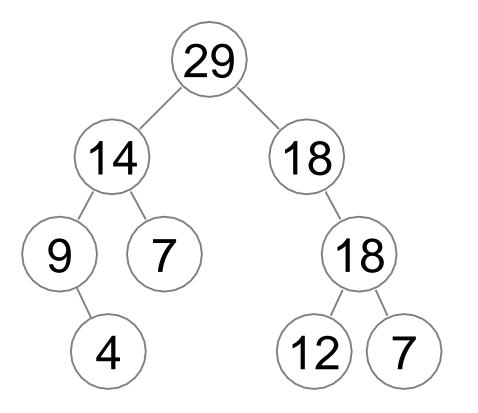
if current node is smaller than one of its children, swap it with the largest child



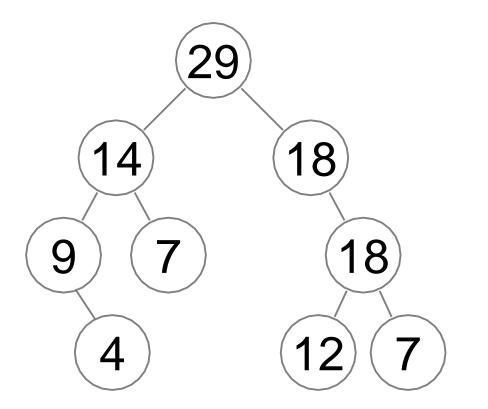
if current node is smaller than one of its children, swap it with the largest child



the heap property is restored



depends on how many times the *swap* is performed to restore the heap



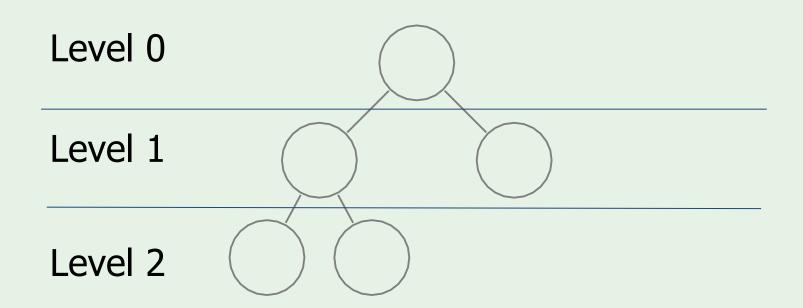
running time: O(tree height)

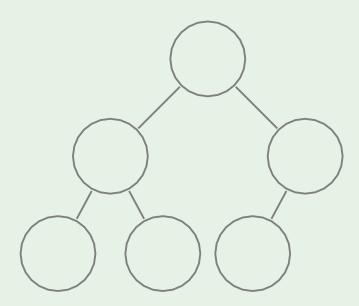
We want a tree with min height How to Keep a Tree Shallow?

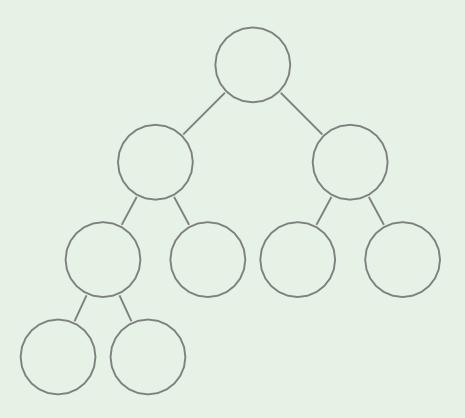
Definition

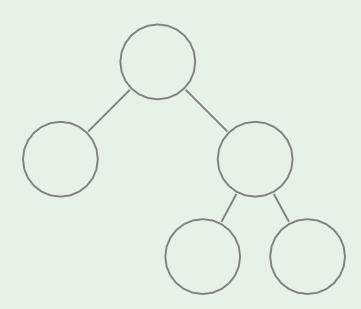
A binary tree is *complete* if all its levels are full except possibly the last one which is filled from left to right.

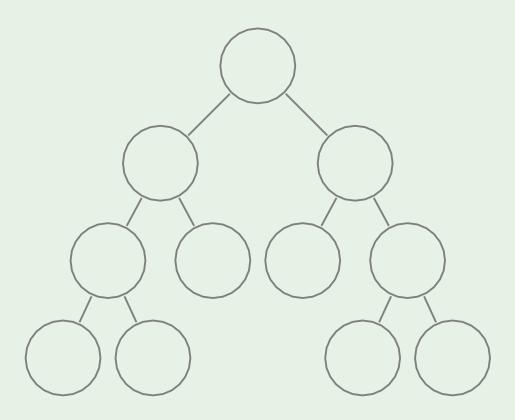
Example: complete binary tree











Advantage of Complete Binary Trees: low height

Theorem

A complete binary tree with n total nodes has height at most $O(\log n)$.

Proof

- Complete the last level of the tree if it is not full to get a full binary tree.
- □ This full tree has $n' \ge n$ nodes and the same height *h*.
- At level 0 we have 2⁰=1 node, at the first level: 2¹=2 nodes, at level *k*: 2^k nodes, and the total number of levels is *h*-1. Then the total number of nodes:

$$n' = 1 + 2^{1} + 2^{2} + \dots 2^{h-1} = \frac{2^{(h-1)+1} - 1}{2 - 1} = 2^{h} - 1$$

(sum of geom. series)

□ Note that $n' \le 2n$, because the actual total number of nodes *n* is between $2^{h-2+1}-1 + 1 = 2^{h-1}$ and $2^h - 1$

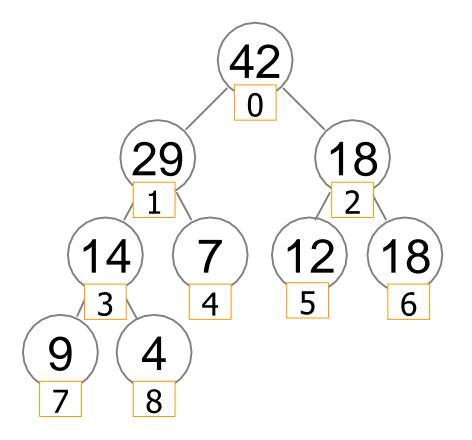
□ Then
$$n' = 2^h - 1$$
 and hence:
 $h = \log_2(n' + 1) \le \log_2(2n + 1) = O(\log n)$

If we store Heap as Complete Binary Tree:

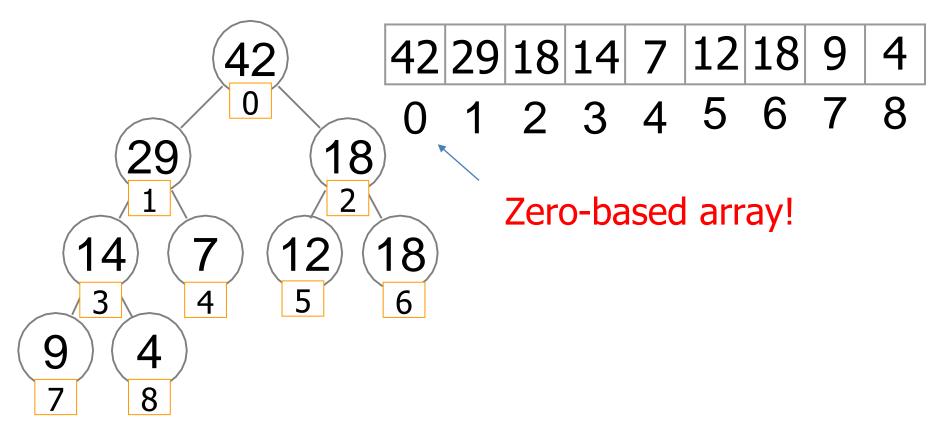
- $\rightarrow \quad Top \text{ in time O(1)}$
- $\rightarrow \quad Dequeue \text{ in time } O(\log n)$
- $\rightarrow \quad Enqueue \text{ in time } O(\log n)$

As long as we keep the tree complete

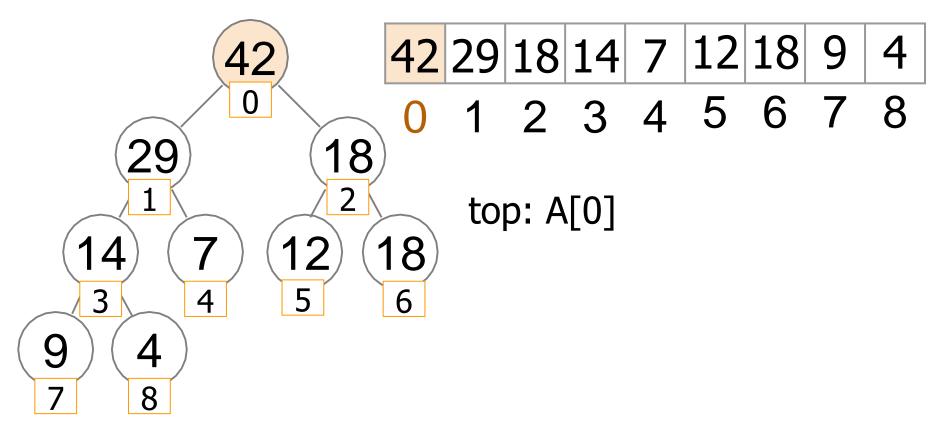
The Complete Binary Tree can be stored in an Array



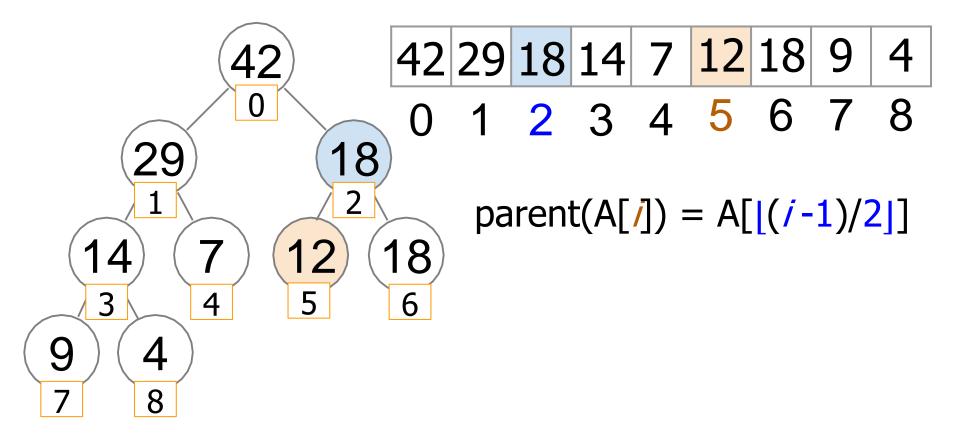
The Complete Binary Tree can be stored in an Array



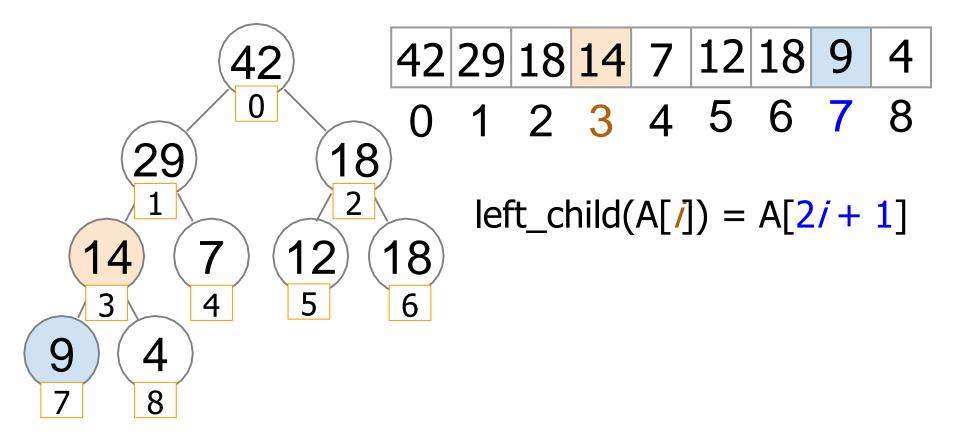
[The Complete Binary Tree can be stored in an Array]



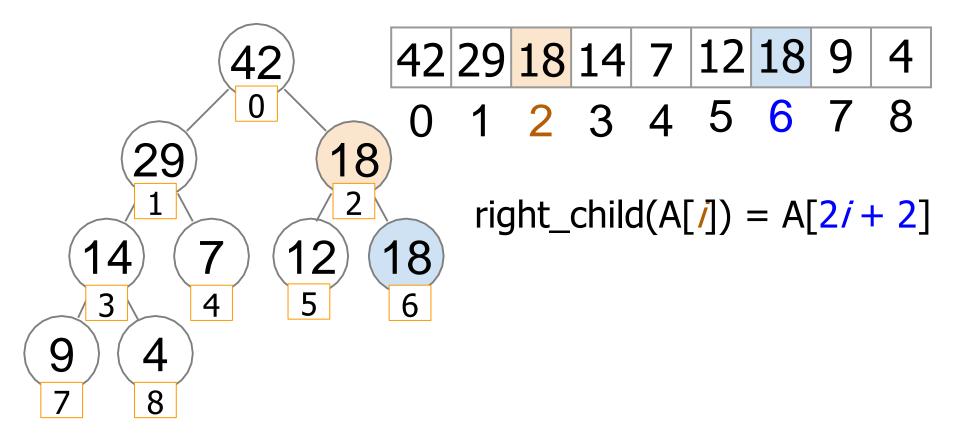
Tree operations in a heap array



Tree operations in a heap array

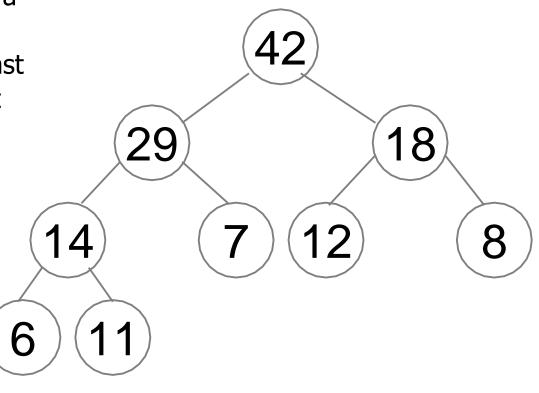


Tree operations in a heap array



Heap array: enqueue (33)

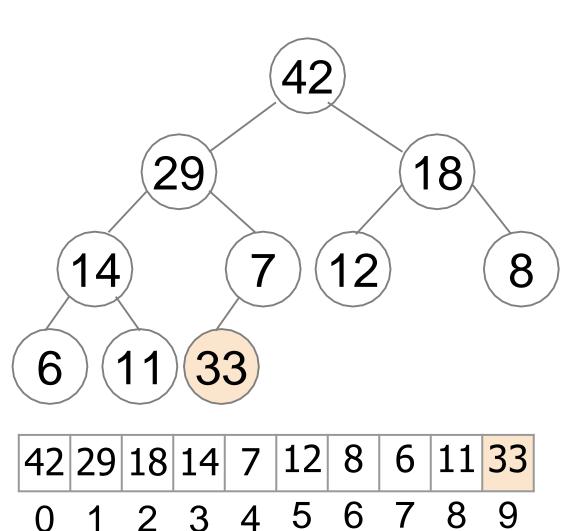
to add an element, insert it as a leaf in the leftmost vacant position in the last level (the last position of the array) and let it *sift up*



42 29 18 14 7 12 8 6 11 5 6 8 2 3 9 1 Ω

Heap array: enqueue (33)

parent(9) = 4
swap(A[9],A[4])
parent(4) = 1
swap(A[4],A[1])
parent(1) = 0 OK
stop

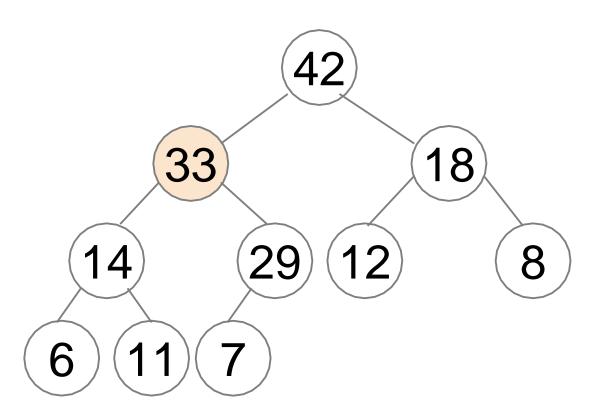


Heap array: enqueue (33)

parent(9) = 4swap(A[9],A[4])

parent(4) = 1swap(A[4],A[1])

parent(1) = 0 OKstop



7 42 33 18 14 29 12 8 6 11 5 6 7 8 9 1 2 3 4 $\left(\right)$

Heap array: *dequeue()*

Similarly, to extract the maximum value, replace the root by the last leaf and let it *sift down*

Binary Min-Heap

Definition

Binary **min**-heap is a binary tree where the value of each node is **at most** the values of its children.

Can be implemented similarly to max-heap

Priority Queue: possible Data Structures

	enqueue	dequeue
Unsorted array/list	O(1)	O(n)
Sorted array/list	O(n)	O(1)
Binary heap	O(log n)	O(log n)

- Binary heap can be used to implement *Priority Queue* **ADT**
- Heap implementation is very efficient: all required operations work in time O(log n)
- Heap implementation as an array is also space efficient: we only store an array of priorities. Parent-child relationships are not stored, but are implied by the positions in the array

Common implementations of Priority Queues using Heaps

- C++: *priority_queue* in *std* library
- Java: *PriorityQueue* in *java.util* package
- Python: *heapq* (separate module)

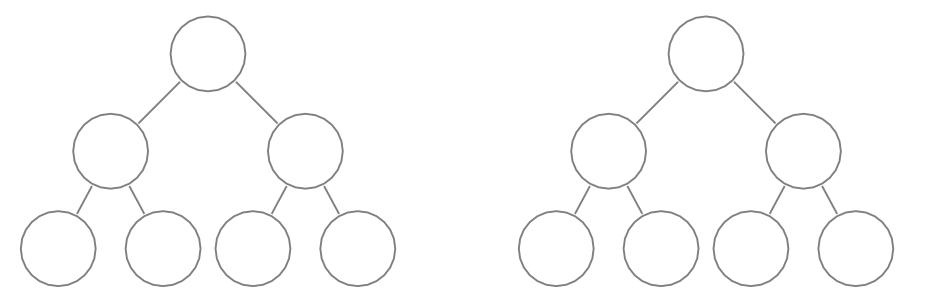
Underneath is a dynamic array

Problem 3

Maintaining median

- Input: Array A of n elements with dynamic maintenance in time O(log n)
- Output: Median the middle value of elements in A in time O(1)

Median in time O(1)



0, 1, 2, 3, 5, 7, 8, 9