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[Example 3. Priority Queue ADT]

➢ A priority queue is a generalization of a queue where each 
element is assigned a priority and elements come out in order of 
priority

➢ If the priority is the earliest time they were added to the queue 
then priority queue becomes a regular queue

➢ We are interested in a case when priority of each element is not 
related to the time when the element was added to the queue



Specification of Priority Queue ADT

Priority Queue is an Abstract Data Type
supporting the following main operations:

➔ top() - get an element with the highest 

priority

➔ enqueue(e,p)* - adds a new element with 

priority p

➔ dequeue() - removes and returns the element 

with the highest priority

*To simplify the discussion we use enqueue(e), where e is a number 

which reflects the priority



Priority Queue: possible Data Structures

enqueue dequeue

Unsorted array/list O(1) O(n)

Sorted array/list O(n) O(1)



Definition
Binary max-heap is a binary tree (each node has zero, 

one, or two children) where the value of each node is 

at least the values of its children.

https://visualgo.net/en/heap?slide=1

[Binary max-heap]

https://visualgo.net/en/heap?slide=1
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Heap operations: top

return the root value
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Run-time: O(1)



Heap operations: enqueue(e)

attach a new node to 

any leaf
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Heap operations: enqueue(e)

the heap property 

may become violated
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Heap operations: enqueue(e)

to fix that we let the 

new node sift up
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Heap operations: sift_up(e)

if current element is 

bigger than the parent: 

swap
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Heap operations: sift_up(e)
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Heap operations: sift_up(e)
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Heap operations: sift_up(e)

if current element is 

bigger than the parent: 

swap
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Heap operations: sift_up(e)

this works because the 

heap property is violated 

only on a single edge at a 

time
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Heap operations: sift_up(e)

if current element is 

bigger than the parent: 

swap
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Heap operations: sift_up(e)

if current element is 

bigger than the parent: 

swap
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Heap operations: sift_up(e)

heap property is 

restored
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Heap operations: enqueue(e)

running time of 

enqueue depends on 

how many times we 

need to swap 
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Heap operations: enqueue(e)

with each swap, the 

problematic node 

moves one node closer 

to the root
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running time: O(tree height)



Heap operations: dequeue

remove and return the 

root value 42
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Heap operations: dequeue

remove the root value
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Heap operations: dequeue

replace the empty 

node value with any 

leaf node value and 

remove the leaf
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Heap operations: dequeue

replace the empty 

node value with any 

leaf node value and 

remove the leaf
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Heap operations: dequeue

again, this may violate 

the heap property 9
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Heap operations: dequeue

to fix it we let the 

problematic node sift 

down
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Heap operations: sift_down(e)

if current node is smaller 

than one of its children, 

swap it with the largest 

child
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Heap operations: sift_down(e)

swapping with the 

largest child 

automatically restores 

both broken edges
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Heap operations: sift_down(e)

swapping with the 
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Heap operations: sift_down(e)

if current node is smaller 

than one of its children, 

swap it with the largest 

child
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Heap operations: sift_down(e)

if current node is smaller 
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Heap operations: sift_down(e)

the heap property is 
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Heap operations: dequeue

depends on how many 

times the swap is 

performed to restore the 

heap
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running time: O(tree height)



How to Keep a Tree Shallow?

Definition
A binary tree is complete if all its levels are full 

except possibly the last one which is filled from left to 

right.

We want a tree with min height



Example: complete binary tree

Level 0

Level 1

Level 2



Complete binary tree ?



Complete binary tree ?



Complete binary tree ?



Complete binary tree ?



Advantage of Complete Binary Trees: 
low height

Theorem
A complete binary tree with n total nodes has 

height at most O(log n).



Proof
❏ Complete the last level of the tree if it is not full to get a 

full binary tree.

❏ This full tree has n′ ≥ n nodes and the same height h.

❏ At level 0 we have 20=1 node, at the first level: 21=2 

nodes, at level k: 2k nodes, and the total number of levels 

is h-1. Then the total number of nodes: 

n′ = 1 + 2
1

+2
2

+…2
h-1

=                 = 2
h

- 1 

(sum of geom. series)

❏ Note that n′ ≤ 2n, because the actual total number of 
nodes n is between 2h-2+1 -1 + 1 = 2h-1 and 2h -1

❏ Then n′ = 2h − 1 and hence:

h = log2(n
′
+ 1) ≤ log2(2n + 1) = O(log n).

2
(h-1)+1

-1

2-1



If we store Heap as 
Complete Binary Tree:

➔ Top in time O(1)

➔ Dequeue in time O(log n)

➔ Enqueue in time O(log n)

As long as we keep the tree complete



The Complete Binary Tree can be 
stored in an Array
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The Complete Binary Tree can be 
stored in an Array

Zero-based array!
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top: A[0]

[The Complete Binary Tree can be 
stored in an Array]



Tree operations in a heap array
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parent(A[i]) = A[⌊(i -1)/2⌋]



Tree operations in a heap array
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left_child(A[i]) = A[2i + 1]



Tree operations in a heap array
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right_child(A[i]) = A[2i + 2] 



Heap array: enqueue(33)

42

29

14

6 11

7

18

12 8

to add an element, insert it as a 

leaf in the leftmost vacant 

position in the last level (the last 

position of the array) and let it 

sift up
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Heap array: enqueue(33)
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33

parent(9) = 4
swap(A[9],A[4])

parent(4) = 1
swap(A[4],A[1])

parent(1) = 0 OK
stop 



Heap array: enqueue(33)
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parent(9) = 4
swap(A[9],A[4])

parent(4) = 1
swap(A[4],A[1])

parent(1) = 0 OK
stop 
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Heap array: dequeue()

Similarly, to extract the maximum value,  replace the root by the 

last leaf and let it sift  down



Binary Min-Heap

Definition
Binary min-heap is a binary tree where the  value of each 

node is at most the values of its children.

Can be implemented similarly to max-heap



Priority Queue: possible Data Structures

enqueue dequeue

Unsorted array/list O(1) O(n)

Sorted array/list O(n) O(1)

Binary heap O(log n) O(log n)

➢ Binary heap can be used to implement Priority Queue ADT

➢ Heap implementation is very efficient: all required operations work in 
time O(log n)

➢ Heap implementation as an array is also space efficient: we only 
store an array of priorities. Parent-child relationships are not stored, 
but are implied by the positions in the array 



Common implementations of 
Priority Queues using Heaps

● C++: priority_queue in std library 
● Java: PriorityQueue in java.util package
● Python: heapq (separate module)

Underneath is a dynamic array



Maintaining median

Input: Array A of n elements with dynamic   

maintenance in time O(log n)

Median - the middle value of elements 

in A in time O(1)
Output:

Problem 3



Median in time O(1)

0, 1, 2, 3, 5, 7, 8, 9


