
ADT and Data structures.
Priority Queue

[Review 02.02]
by Marina Barsky

[Example 3. Priority Queue ADT]

➢ A priority queue is a generalization of a queue where each
element is assigned a priority and elements come out in order of
priority

➢ If the priority is the earliest time they were added to the queue
then priority queue becomes a regular queue

➢ We are interested in a case when priority of each element is not
related to the time when the element was added to the queue

Specification of Priority Queue ADT

Priority Queue is an Abstract Data Type
supporting the following main operations:

➔ top() - get an element with the highest

priority

➔ enqueue(e,p)* - adds a new element with

priority p

➔ dequeue() - removes and returns the element

with the highest priority

*To simplify the discussion we use enqueue(e), where e is a number

which reflects the priority

Priority Queue: possible Data Structures

enqueue dequeue

Unsorted array/list O(1) O(n)

Sorted array/list O(n) O(1)

Definition
Binary max-heap is a binary tree (each node has zero,

one, or two children) where the value of each node is

at least the values of its children.

https://visualgo.net/en/heap?slide=1

[Binary max-heap]

https://visualgo.net/en/heap?slide=1

Heap?

42

29

14

9

7

18

18

12 7

Heap? Yes

42

29

14

9

7

18

18

12 7

Heap?

42

29

14

19

7

18

25

12 7

Heap? No

42

29

14

19

7

18

25

12 7

Heap operations: top

return the root value

42

29

14

9

7

18

18

12 74

Run-time: O(1)

Heap operations: enqueue(e)

attach a new node to

any leaf

42

29

14

9

7

18

18

12 74

32

Heap operations: enqueue(e)

the heap property

may become violated

42

29

14

9

7

18

18

12 74

32

Heap operations: enqueue(e)

to fix that we let the

new node sift up

42

29

14

9

7

18

18

12 74

32

Heap operations: sift_up(e)

if current element is

bigger than the parent:

swap

42

29

14

9

7

18

18

12 74

32

Heap operations: sift_up(e)

if current element is

bigger than the parent:

swap

42

29

14

9

7

18

18

12 74

32

Heap operations: sift_up(e)

if current element is

bigger than the parent:

swap

42

29

14

32

7

18

18

12 74

9

Heap operations: sift_up(e)

if current element is

bigger than the parent:

swap

42

29

14

32

7

18

18

12 74

9

Heap operations: sift_up(e)

this works because the

heap property is violated

only on a single edge at a

time

42

29

14

32

7

18

18

12 74

9

Heap operations: sift_up(e)

if current element is

bigger than the parent:

swap

42

29

32

14

7

18

18

12 74

9

Heap operations: sift_up(e)

if current element is

bigger than the parent:

swap

42

32

29

14

7

18

18

12 74

9

Heap operations: sift_up(e)

heap property is

restored

42

32

29

14

7

18

18

12 74

9

Heap operations: enqueue(e)

running time of

enqueue depends on

how many times we

need to swap

42

32

29

14

7

18

18

12 74

9

Heap operations: enqueue(e)

with each swap, the

problematic node

moves one node closer

to the root

42

32

29

14

7

18

18

12 74

9

running time: O(tree height)

Heap operations: dequeue

remove and return the

root value 42

29

14

9

7

18

18

12 74

Heap operations: dequeue

remove the root value

29

14

9

7

18

18

12 74

Heap operations: dequeue

replace the empty

node value with any

leaf node value and

remove the leaf
29

14

9

7

18

18

12 74

Heap operations: dequeue

replace the empty

node value with any

leaf node value and

remove the leaf

9

29

14 7

18

18

12 74

Heap operations: dequeue

again, this may violate

the heap property 9

29

14 7

18

18

12 74

Heap operations: dequeue

to fix it we let the

problematic node sift

down

9

29

14 7

18

18

12 74

Heap operations: sift_down(e)

if current node is smaller

than one of its children,

swap it with the largest

child

9

29

14 7

18

18

12 74

Heap operations: sift_down(e)

swapping with the

largest child

automatically restores

both broken edges

9

29

14 7

18

18

12 74

Heap operations: sift_down(e)

swapping with the

largest child

automatically restores

both broken edges

29

9

14 7

18

18

12 74

Heap operations: sift_down(e)

if current node is smaller

than one of its children,

swap it with the largest

child

29

9

14 7

18

18

12 74

Heap operations: sift_down(e)

if current node is smaller

than one of its children,

swap it with the largest

child

29

14

9 7

18

18

12 74

Heap operations: sift_down(e)

the heap property is

restored 29

14

9 7

18

18

12 74

Heap operations: dequeue

depends on how many

times the swap is

performed to restore the

heap

29

14

9 7

18

18

12 74

running time: O(tree height)

How to Keep a Tree Shallow?

Definition
A binary tree is complete if all its levels are full

except possibly the last one which is filled from left to

right.

We want a tree with min height

Example: complete binary tree

Level 0

Level 1

Level 2

Complete binary tree ?

Complete binary tree ?

Complete binary tree ?

Complete binary tree ?

Advantage of Complete Binary Trees:
low height

Theorem
A complete binary tree with n total nodes has

height at most O(log n).

Proof
❏ Complete the last level of the tree if it is not full to get a

full binary tree.

❏ This full tree has n′ ≥ n nodes and the same height h.

❏ At level 0 we have 20=1 node, at the first level: 21=2

nodes, at level k: 2k nodes, and the total number of levels

is h-1. Then the total number of nodes:

n′ = 1 + 2
1

+2
2

+…2
h-1

= = 2
h

- 1

(sum of geom. series)

❏ Note that n′ ≤ 2n, because the actual total number of
nodes n is between 2h-2+1 -1 + 1 = 2h-1 and 2h -1

❏ Then n′ = 2h − 1 and hence:

h = log2(n
′
+ 1) ≤ log2(2n + 1) = O(log n).

2
(h-1)+1

-1

2-1

If we store Heap as
Complete Binary Tree:

➔ Top in time O(1)

➔ Dequeue in time O(log n)

➔ Enqueue in time O(log n)

As long as we keep the tree complete

The Complete Binary Tree can be
stored in an Array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

The Complete Binary Tree can be
stored in an Array

Zero-based array!

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

top: A[0]

[The Complete Binary Tree can be
stored in an Array]

Tree operations in a heap array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

parent(A[i]) = A[⌊(i -1)/2⌋]

Tree operations in a heap array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

left_child(A[i]) = A[2i + 1]

Tree operations in a heap array

42

29

14

9

7

18

1812

4

1

0

2

3 4 5 6

7 8

42 29 18 14 7 12 18 9 4

0 1 2 3 4 5 6 7 8

right_child(A[i]) = A[2i + 2]

Heap array: enqueue(33)

42

29

14

6 11

7

18

12 8

to add an element, insert it as a

leaf in the leftmost vacant

position in the last level (the last

position of the array) and let it

sift up

42 29 18 14 7 12 8 6 11

0 1 2 3 4 5 6 7 8 9

Heap array: enqueue(33)

42

29

14

6 11

7

18

12 8

42 29 18 14 7 12 8 6 11 33

0 1 2 3 4 5 6 7 8 9

33

parent(9) = 4
swap(A[9],A[4])

parent(4) = 1
swap(A[4],A[1])

parent(1) = 0 OK
stop

Heap array: enqueue(33)

42 33 18 14 29 12 8 6 11 7

0 1 2 3 4 5 6 7 8 9

parent(9) = 4
swap(A[9],A[4])

parent(4) = 1
swap(A[4],A[1])

parent(1) = 0 OK
stop

42

33

14

6 11

29

18

12 8

7

Heap array: dequeue()

Similarly, to extract the maximum value, replace the root by the

last leaf and let it sift down

Binary Min-Heap

Definition
Binary min-heap is a binary tree where the value of each

node is at most the values of its children.

Can be implemented similarly to max-heap

Priority Queue: possible Data Structures

enqueue dequeue

Unsorted array/list O(1) O(n)

Sorted array/list O(n) O(1)

Binary heap O(log n) O(log n)

➢ Binary heap can be used to implement Priority Queue ADT

➢ Heap implementation is very efficient: all required operations work in
time O(log n)

➢ Heap implementation as an array is also space efficient: we only
store an array of priorities. Parent-child relationships are not stored,
but are implied by the positions in the array

Common implementations of
Priority Queues using Heaps

● C++: priority_queue in std library
● Java: PriorityQueue in java.util package
● Python: heapq (separate module)

Underneath is a dynamic array

Maintaining median

Input: Array A of n elements with dynamic

maintenance in time O(log n)

Median - the middle value of elements

in A in time O(1)
Output:

Problem 3

Median in time O(1)

0, 1, 2, 3, 5, 7, 8, 9

