Many algorithms use Priority Queues

>  Dijkstra’s algorithm: finding a shortest path in a graph

>  Prim’s algorithm: constructing a minimum spanning tree
of a graph

>  Huffman encoding: constructing an optimum prefix-free
encoding of a string

=  Heap sort: sorting a given sequence



ADT and Data structures.
Heap Sort

[Review 02.03]
by Marina Barsky



We can sort using Heaps!

» After array elements are engqueued:

» Produce a sorted array by dequeuing them



Algorithm HeapSort

HeapSortNaive (array A of size n)

create an empty max-heap

for i from 0 to n-1:
enqueue (A[i ])

for i from n-1 downto O:
Ali] ¢ dequeue()

What is the running time?



Heapsort: naive

The resulting algorithm has running time O(n log n)

Natural generalization of selection sort. instead of
simply scanning the rest of the array to find the
maximum value, use a smart data structure

Not in-place: uses additional space O(n) to store the
heap



In-place Heapsort:
all is done inside the input array

= Turn input array A of size ninto a heap of size m=n by
rearranging its elements

>  After this, extract max at A[0] and swap it with the
element A[m-1]

>  Decrement heap size m:= m-1
>  Restore heap

>  Continue until heap size m=1



How to Heapify an array

nota heap H @ >  Lets’ go bottom up and repair
heap property for all subtrees
/ 0 \ rooted at current node
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How to Heapify an array
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Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

If current node is a leaf, then
it does not need to be repaired

How do we find the first from
the end node that is not a
leaf?



How to Heapify an array

nota heap H @ >  Lets’ go bottom up and repair
heap property for all subtrees
/ 0 \ rooted at current node
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How to Heapify an array
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We need to process all
elements starting from
position /=|(8-1)/2] = 3 until
position 0 and repair heap
violations by calling
sift_down(/)



How to Heapify an array

not a heap H @ > We need to process all
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How to Heapify an array
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All the nodes H[3...8] are
now repaired



How to Heapify an array

nota heap H @ >  the next node we need to fix
is at position 2 of the array
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sift_down(2)



How to Heapify an array

nota heap H @ >  the next node we need to fix
is at position 2 of the array
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How to Heapify an array

nota heap H @ >  the next node we need to fix
is at position 1 of the array
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How to Heapify an array

nota heap H @ >  the next node we need to fix
is at position 1 of the array
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How to Heapify an array
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Finally, we fix the root at
position 0

sift_down(0)



How to Heapify an array

not a heap H @ > Finally, we fix the root at
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How to Heapify an array
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We rearranged the elements
of the input array such that it
is now a heap

Next, we can use degueue
inside the array itself to sort
it in-place



First - turn Array into a Heap

Heapify (array A of size n)

last <—n -1
for i from |(last-1)/2] down to O:
sift_ down (/)



In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m <& n

repeat (n - 1) times:
swap A[0] and A[m-1]
mé&m-1
sift._ down (heap of size m, 0)

Running time: O(n log n)

No additional space (in-place)



Run-time of Heapify

~  The running time of Heapify is 0(nlog n) since we
call sift_ down for O(n) nodes



The height of nodes at level i

the height
jof a heap
node at
level /

1&

level O

level 1

level |

level h

Definition

If we count levels of the
heap from top to bottom,
then the height of a heap
node at level / is defined
to be j = h -Jj where his
the total height of the
heap

When we are repairing the heap, for each node at level /
we need to swap at most j values



Run-time of Heapify

=  The running time of Heapify is 0(n7log n) since
we call sift_down for O(n) nodes

> If a node is a leaf then we do not call sift down
on it

> If a node is close to the leaves, then sifting it
down does not take log

>  We have many such nodes!

> Is our estimate of the running time of Heapify too
pessimistic?



Run-time of Heapify

level # nodes node height
h-h 2h-h h
h-2 2h-2 2
h-1 < 2h1 1
h-0 < 2h-0 0

Total work:

h h ,
Z j* 20T =2h Z [ * 5 where jrepresents the height of the

=0 =0 nodes at each of 0.../4 tree levels



Commonly used summations

zn: n(n 1) — 0(n?)

n 2n+1_
2] = =21 —1=0(2"
2.7 =5 0(2")
n . dn+1 J=0
J = — n
Zd ——— = 0" ]
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The upper bound of unknown sum
Consider the sum of infinite convergent geometric series with x<1 and a,=1

(1)

Take a derivative with respect to x of both parts of equality (1):

| 1
Zj Falh = (1 —x)?2 (2)

j=0

Multiply both sides of (2) by x:

. L
Y gt == (3) JZ] o

(1—x)?

Jj=0
Substitute X—‘/z this sum is

at most 2
Z} * o7 = 12— 2 even for infinite
) series!




This expression evaluates to O(n)

1
2h z j*57| < 2M2 = 0(2n) = 0(2%91) = O(n)

j=0

The running time of Heapify is 0(n)

To convert an arbitrary array into a heap takes
linear time and no additional space!



Top-k Problem

Input: An array A of size n, an integer
1 <k<n.

Output: k largest elements of A (top-k).

Can be solved in time: O(n) + O (klog n)



