
➢ Dijkstra’s algorithm: finding a shortest path in a graph

➢ Prim’s algorithm: constructing a minimum spanning tree
of a graph

➢ Huffman encoding: constructing an optimum prefix-free
encoding of a string

➢ Heap sort: sorting a given sequence

Many algorithms use Priority Queues

ADT and Data structures.
Heap Sort

[Review 02.03]
by Marina Barsky

We can sort using Heaps!

➢ After array elements are enqueued:

➢ Produce a sorted array by dequeuing them

HeapSortNaive (array A of size n)

create an empty max-heap

for i from 0 to n-1:

enqueue (A[i])

for i from n-1 downto 0:

A[i] ← dequeue()

Algorithm HeapSort

What is the running time?

➢ The resulting algorithm has running time O(n log n)

➢ Natural generalization of selection sort: instead of
simply scanning the rest of the array to find the
maximum value, use a smart data structure

➢ Not in-place: uses additional space O(n) to store the
heap

Heapsort: naive

➢ Turn input array A of size n into a heap of size m=n by
rearranging its elements

➢ After this, extract max at A[0] and swap it with the
element A[m-1]

➢ Decrement heap size m:= m -1

➢ Restore heap

➢ Continue until heap size m=1

In-place Heapsort:
all is done inside the input array

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18
0 1 2 3 4 5 6 7 8

not a heap H ➔ Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18

0 1 2 3 4 5 6 7 8

not a heap H ➔ Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

➔ If current node is a leaf, then
it does not need to be repaired

➔ How do we find the first from
the end node that is not a
leaf?

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18
0 1 2 3 4 5 6 7 8

not a heap H ➔ Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

➔ If current node is a leaf, then
it does not need to be repaired

➔ How do we find the first from
the end node that is not a
leaf?

We find the parent of the
last leaf H[n - 1]:
parent(i) = ⌊(i -1)/2⌋

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18
0 1 2 3 4 5 6 7 8

not a heap H ➔ We need to process all
elements starting from
position i=⌊(8-1)/2⌋ = 3 until

position 0 and repair heap
violations by calling
sift_down(i)

How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18

0 1 2 3 4 5 6 7 8

not a heap H ➔ We need to process all
elements starting from
position i=⌊(8-1)/2⌋ = 3 until

position 0 and repair heap
violations by calling
sift_down(i)

sift_down(3)

How to Heapify an array

29

14

18

12

42

7

418

9

1

0

2

3 4 5 6

7 8

not a heap H ➔ All the nodes H[3...8] are
now repaired

All these nodes
satisfy heap
property

29 14 7 18 42 18 4 12 9

0 1 2 3 4 5 6 7 8

How to Heapify an array

29

14

18

12

42

7

418

9

1

0

2

3 4 5 6

7 8

29 14 7 18 42 18 4 12 9
0 1 2 3 4 5 6 7 8

not a heap H ➔ the next node we need to fix
is at position 2 of the array

sift_down(2)

How to Heapify an array

29

14

18

12

42

18

47

9

1

0

2

3 4 5 6

7 8

not a heap H ➔ the next node we need to fix
is at position 2 of the array

sift_down(2)

29 14 18 18 42 7 4 12 9
0 1 2 3 4 5 6 7 8

How to Heapify an array

29

14

18

12

42

18

47

9

1

0

2

3 4 5 6

7 8

29 14 18 18 42 7 4 12 9

0 1 2 3 4 5 6 7 8

not a heap H ➔ the next node we need to fix
is at position 1 of the array

sift_down(1)

How to Heapify an array

29

42

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

29 42 18 18 14 7 4 12 9
0 1 2 3 4 5 6 7 8

not a heap H ➔ the next node we need to fix
is at position 1 of the array

sift_down(1)

How to Heapify an array

29

42

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

29 42 18 18 14 7 4 12 9

0 1 2 3 4 5 6 7 8

not a heap H ➔ Finally, we fix the root at
position 0

sift_down(0)

How to Heapify an array

42

29

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

42 29 18 18 14 7 4 12 9

0 1 2 3 4 5 6 7 8

not a heap H ➔ Finally, we fix the root at
position 0

sift_down(0)

How to Heapify an array

42

29

18

12

14

18

47

9

1

0

2

3 4 5 6

7 8

42 29 18 18 14 7 4 12 9

0 1 2 3 4 5 6 7 8

heap H ➔ We rearranged the elements
of the input array such that it
is now a heap

➔ Next, we can use dequeue
inside the array itself to sort
it in-place

First - turn Array into a Heap

Heapify (array A of size n)

last ← n - 1

for i from ⌊(last -1)/2⌋ down to 0:

sift_down (i)

In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m ← n

repeat (n − 1) times:

swap A[0] and A[m-1]

m ← m − 1

sift_down (heap of size m, 0)

Running time: O(n log n)

No additional space (in-place)

➢ The running time of Heapify is O(n log n) since we
call sift_down for O(n) nodes

Run-time of Heapify

the height
j of a heap
node at
level i

Definition

If we count levels of the
heap from top to bottom,
then the height of a heap
node at level i is defined
to be j = h - i, where h is
the total height of the
heap

level 0

level 1

level i

level h

When we are repairing the heap, for each node at level i
we need to swap at most j values

The height of nodes at level i

➢ The running time of Heapify is O(n log n) since

we call sift_down for O(n) nodes

➢ If a node is a leaf then we do not call sift_down
on it

➢ If a node is close to the leaves, then sifting it
down does not take log n

➢ We have many such nodes!

➢ Is our estimate of the running time of Heapify too

pessimistic?

Run-time of Heapify

Run-time of Heapify

level # nodes node height

h-h 2h-h h

... ...

h-2 2h-2 2

h-1 ≤ 2h-1 1

h-0 ≤ 2h-0 0

Total work:

, where j represents the height of the
nodes at each of 0...h tree levels

Commonly used summations

෍

𝑗=1

𝑛

𝑗 =
𝑛(𝑛 − 1)

2
= 𝑂(𝑛2)

෍

𝑗=0

𝑛

𝑑𝑗 =
𝑑𝑛+1 − 1

𝑑 − 1
= 𝑂(𝑑𝑛)

෍

𝑗=0

𝑛

2𝑗 =
2𝑛+1 − 1

2 − 1
= 2𝑛+1 − 1 = 𝑂(2𝑛)

෍

𝑗=0

∞
1

2𝑗
=

1

1 −
1
2

= 2 = 𝑂(1)

෍

𝑗=1

𝑛
1

𝑗
≈ න

1

𝑛 1

𝑗
𝑑𝑗 = ln 𝑛 = 𝑂(log 𝑛)

෍

𝑗=0

𝑛

𝑗
1

2𝑗
?

The upper bound of unknown sum

Consider the sum of infinite convergent geometric series with x<1 and a0=1

Take a derivative with respect to x of both parts of equality (1):

Multiply both sides of (2) by x:

Substitute x=½ this sum is
at most 2
even for infinite
series!

(1)

(2)

(3)

2

This expression evaluates to O(n)

≤ 2h∗2 = O(2h) = O(2log n) = O(n)

The running time of Heapify is O(n)

To convert an arbitrary array into a heap takes
linear time and no additional space!

Top-k Problem

Input: An array A of size n, an integer

1 ≤ k ≤ n.

Output: k largest elements of A (top-k).

Can be solved in time: O (n) + O (k log n)

