
➢ Dijkstra’s algorithm: finding a shortest path in a graph

➢ Prim’s algorithm: constructing a minimum spanning tree 
of a graph 

➢ Huffman encoding: constructing an optimum prefix-free 
encoding of a string  

➢ Heap sort: sorting a given sequence

Many algorithms use Priority Queues
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by Marina Barsky



We can sort using Heaps! 

➢ After array elements are enqueued:

➢ Produce a sorted array by dequeuing them



HeapSortNaive (array A of size n)

create an empty max-heap

for  i from 0 to n-1:

enqueue (A[i ])

for  i from n-1 downto 0:

A[i ] ← dequeue()

Algorithm HeapSort

What is the running time?



➢ The resulting algorithm has running time O(n log n)

➢ Natural generalization of selection sort:  instead of 
simply scanning the rest of the array to find the 
maximum value, use a smart data structure

➢ Not in-place: uses additional space O(n) to store the 
heap

Heapsort: naive



➢ Turn input array A of size n into a heap of size m=n by 
rearranging its elements

➢ After this, extract max at A[0] and swap it with the 
element A[m-1]

➢ Decrement heap size m:= m -1

➢ Restore heap

➢ Continue until heap size m=1

In-place Heapsort: 
all is done inside the input array



How to Heapify an array 
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not a heap H ➔ Lets’ go bottom up and repair 
heap property for all subtrees 
rooted at current node



How to Heapify an array
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How to Heapify an array
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not a heap H ➔ Lets’ go bottom up and repair 
heap property for all subtrees 
rooted at current node

➔ If current node is a leaf, then 
it does not need to be repaired

➔ How do we find the first from 
the end node that is not a 
leaf?

We find the parent of the 
last leaf H[n - 1]: 
parent(i) = ⌊(i -1)/2⌋



How to Heapify an array

29

14

9

12

42

7

418

18

1

0

2

3 4 5 6

7 8

29 14 7 9 42 18 4 12 18
0 1 2 3 4 5 6 7 8

not a heap H ➔ We need to process all 
elements starting from 
position i=⌊(8-1)/2⌋ = 3 until 

position 0 and repair heap 
violations by calling 
sift_down(i)



How to Heapify an array
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How to Heapify an array
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How to Heapify an array
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How to Heapify an array
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heap H ➔ We rearranged the elements 
of the input array such that it 
is now a heap

➔ Next, we can use dequeue 
inside the array itself to sort 
it in-place



First - turn Array into a Heap

Heapify (array A of size n)

last ← n - 1

for  i from ⌊(last -1)/2⌋ down to 0:  

sift_down (i )



In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m ← n

repeat (n − 1) times:  

swap A[0] and A[m-1]  

m ← m − 1  

sift_down (heap of size m, 0)

Running time: O(n log n)

No additional space (in-place)



➢ The running time of Heapify is O(n log n) since we 
call sift_down for O(n) nodes

Run-time of Heapify



the height 
j of a heap 
node at 
level i

Definition

If we count levels of the 
heap from top to bottom, 
then the height of a heap 
node at level i is defined 
to be j = h - i, where h is 
the total height of the 
heap

level 0

level 1

level i

level h

When we are repairing the heap, for each node at level i
we need to swap at most j values

The height of nodes at level i



➢ The running time of Heapify is O(n log n) since 

we call sift_down for O(n) nodes

➢ If a node is a leaf then we do not call sift_down
on it

➢ If a node is close to the leaves, then sifting it 
down does not take log n

➢ We have many such nodes!

➢ Is our estimate of the running time of Heapify too 

pessimistic?

Run-time of Heapify



Run-time of Heapify

level # nodes node height

h-h 2h-h h

... ...

h-2 2h-2 2

h-1 ≤ 2h-1 1

h-0 ≤ 2h-0 0

Total work:

, where j represents the height of the 
nodes at each of 0...h tree levels 



Commonly used summations
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The upper bound of unknown sum

Consider the sum of infinite convergent geometric series with x<1 and a0=1

Take a derivative with respect to x of both parts of equality (1):

Multiply both sides of (2) by x:

Substitute x=½ this sum is 
at most 2 
even for infinite 
series!

(1)

(2)

(3)

2



This expression evaluates to O(n)

≤ 2h∗2 = O(2h) = O(2log n) = O(n)

The running time of Heapify is O(n)

To convert an arbitrary array into a heap takes 
linear time and no additional space! 



Top-k Problem

Input: An array A of size n, an integer  

1 ≤ k ≤ n.

Output: k largest elements of A (top-k).

Can be solved in time: O (n) + O (k log n)


