Many algorithms use Priority Queues

> Dijkstra’s algorithm: finding a shortest path in a graph

> Prim’s algorithm: constructing a minimum spanning tree
of a graph

> Huffman encoding: constructing an optimum prefix-free
encoding of a string

= Heap sort: sorting a given sequence

ADT and Data structures.
Heap Sort

[Review 02.03]
by Marina Barsky

We can sort using Heaps!

» After array elements are engqueued:

» Produce a sorted array by dequeuing them

Algorithm HeapSort

HeapSortNaive (array A of size n)

create an empty max-heap

for i from 0 to n-1:
enqueue (A[i])

for i from n-1 downto O:
Ali] ¢ dequeue()

What is the running time?

Heapsort: naive

The resulting algorithm has running time O(n log n)

Natural generalization of selection sort. instead of
simply scanning the rest of the array to find the
maximum value, use a smart data structure

Not in-place: uses additional space O(n) to store the
heap

In-place Heapsort:
all is done inside the input array

= Turn input array A of size ninto a heap of size m=n by
rearranging its elements

> After this, extract max at A[0] and swap it with the
element A[m-1]

> Decrement heap size m:= m-1
> Restore heap

> Continue until heap size m=1

How to Heapify an array

nota heap H @ > Lets’ go bottom up and repair
heap property for all subtrees
/ 0 \ rooted at current node

2914/ 7 9 4218 4 |12/18

o 1 2 3 4 oS5 6 7 8

How to Heapify an array

notaheapH @

(9) (4

S 1N

2\
2 18 4

VR RN
@o

m

/3 4 5
1218
7 8

2914/ 7 9 4218 4 |12/18

0

1

2

3

4

5

6

6

v

8

Lets’ go bottom up and repair
heap property for all subtrees
rooted at current node

If current node is a leaf, then
it does not need to be repaired

How do we find the first from
the end node that is not a
leaf?

How to Heapify an array

nota heap H @ > Lets’ go bottom up and repair
heap property for all subtrees
/ 0 \ rooted at current node

@ @ » If current node is a leaf, then
s 1N\ 2\ it does not need to be repaired
@ @ 18 @ > How do we find the first from
5 6 the end node that is not a

/3 4 avh
eaf’
@ @ We find the parent of the
/ 8

last leaf H[7 - 1]:
parent(i) = |(i -1)/2]

2914/ 7 9 4218 4 |12/18

o 1 2 3 4 S5 6 [8

How to Heapify an array

notaheapH @

/\

1\

42

@@
7/ 8

2914/ 7 9 4218 4 |12/18

0

1

2

3

2
w28 4

4

5

5

6

-

8

We need to process all
elements starting from
position /=|(8-1)/2] = 3 until
position 0 and repair heap
violations by calling
sift_down(/)

How to Heapify an array

not a heap H @ > We need to process all
elements starting from
/ \ position /=|(8-1)/2 = 3 until

position 0 and repair heap
violations by calling

1 \ 2 sift_down(/)
42 @ sift_down(3)
@ 8
7 8

2914/ 7 9 4218 4 |12/18

o 1 2 3 4 S5 6 [8

How to Heapify an array

notaheapH @

/\

/1\ 2
18 42 @

@ 9 AII these nodes
satisfy heap

property

->

2914/ 7 1842 18 4

12

All the nodes H[3...8] are
now repaired

How to Heapify an array

nota heap H @ > the next node we need to fix
is at position 2 of the array

/ \
/1\ 2
18 42 @
5
1209
7/ 8

2914/ 7 18142183 4|12 9

o 1 2 3 4 S5 6 [8

sift_down(2)

How to Heapify an array

nota heap H @ > the next node we need to fix
is at position 2 of the array

/ \
/1\ 2
18 42 (76
5
1209
7/ 8

2914/18 1842 7 4|12 9

o 1 2 3 4 S5 6 [8

sift_down(2)

How to Heapify an array

nota heap H @ > the next node we need to fix
is at position 1 of the array

/ \
/1\ 2
18 42 (76
5
1209
7/ 8

2914/1818/42 7 4|12 9

o 1 2 3 4 5 6 7 8

sift_down(1)

How to Heapify an array

nota heap H @ > the next node we need to fix
is at position 1 of the array

/ \
/1\ 2
18 14 (76
5
1209
7/ 8

2942/1818/114 7 4|12 9

o 1 2 3 4 S5 6 [8

sift_down(1)

How to Heapify an array

notaheapH @

/\

/1\

@ 14
1209

mz

->

/ 8
2942 18/18 14| /7 12
0 1 2 3 4 5 7

Finally, we fix the root at
position 0

sift_down(0)

How to Heapify an array

not a heap H @ > Finally, we fix the root at
position 0

/ \
/1\ 2
18 14 (76
5
1209
7/ 8

42129181814 7 |4 12/ 9

o 1 2 3 4 5 6 7 8

sift_down(0)

How to Heapify an array

”

heap H

/\

2
18 14@

42129181814/ 7 |4 12| 9

0

1

2

3

4

5

5

6

-

8

We rearranged the elements
of the input array such that it
is now a heap

Next, we can use degueue
inside the array itself to sort
it in-place

First - turn Array into a Heap

Heapify (array A of size n)

last <—n -1
for i from |(last-1)/2] down to O:
sift_ down (/)

In-place Heap Sort

HeapSort (array A of size n)

Heapify (A)

m <& n

repeat (n - 1) times:
swap A[0] and A[m-1]
mé&m-1
sift._ down (heap of size m, 0)

Running time: O(n log n)

No additional space (in-place)

Run-time of Heapify

~ The running time of Heapify is 0(nlog n) since we
call sift_ down for O(n) nodes

The height of nodes at level i

the height
jof a heap
node at
level /

1&

level O

level 1

level |

level h

Definition

If we count levels of the
heap from top to bottom,
then the height of a heap
node at level / is defined
to be j = h -Jj where his
the total height of the
heap

When we are repairing the heap, for each node at level /
we need to swap at most j values

Run-time of Heapify

= The running time of Heapify is 0(n7log n) since
we call sift_down for O(n) nodes

> If a node is a leaf then we do not call sift down
on it

> If a node is close to the leaves, then sifting it
down does not take log

> We have many such nodes!

> Is our estimate of the running time of Heapify too
pessimistic?

Run-time of Heapify

level # nodes node height
h-h 2h-h h
h-2 2h-2 2
h-1 < 2h1 1
h-0 < 2h-0 0

Total work:

h h ,
Z j* 20T =2h Z [* 5 where jrepresents the height of the

=0 =0 nodes at each of 0.../4 tree levels

Commonly used summations

zn: n(n 1) — 0(n?)

n 2n+1_
2] = =21 —1=0(2"
2.7 =5 0(2")
n . dn+1 J=0
J = — n
Zd ——— = 0"]
j=0 1 1
Y =—g=2=001)
j=0 —7
=1 ("1
z—zJ—d] Inn = 0(logn)
J 1 J

The upper bound of unknown sum
Consider the sum of infinite convergent geometric series with x<1 and a,=1

(1)

Take a derivative with respect to x of both parts of equality (1):

| 1
Zj Falh = (1 —x)?2 (2)

j=0

Multiply both sides of (2) by x:

. L
Y gt == (3) JZ] o

(1—x)?

Jj=0
Substitute X—‘/z this sum is

at most 2
Z} * o7 = 12— 2 even for infinite
) series!

This expression evaluates to O(n)

1
2h z j*57| < 2M2 = 0(2n) = 0(2%91) = O(n)

j=0

The running time of Heapify is 0(n)

To convert an arbitrary array into a heap takes
linear time and no additional space!

Top-k Problem

Input: An array A of size n, an integer
1 <k<n.

Output: k largest elements of A (top-k).

Can be solved in time: O(n) + O (klog n)

