
ADT and Data structures.

Local Range ADT

[Review 02.05]

by Marina Barsky

Example 1: Closest Height

Find 3 people in your class whose height is closest to yours.

Example 2: Date Ranges

Find all emails received in a given period

Example 3: Partial Matching

Find all words that start with some given prefix

Specification
A Local Range ADT stores a number of elements each

with a key and supports the following operations:

➔ RangeSearch(lo, hi): returns all elements with keys

between lo and hi

Reduces to find(x) if x=lo=hi

➔ NearestNeighbors(x, k): returns k elements with keys

closest to x

when k = 1:

you want successor(x)

or you want predecessor(x)

Abstract Data Type: Local Range

Sorted Keys

1 4 6 7 10 13 15

The best idea for these queries is to store the
keys in a sorted order

Dynamic Data Structure

➢ Store keys in sorted order
➢ Also want to be able to add/remove keys efficiently:

Insert(x): Adds an element with key x

Delete(x): Removes the element with key x

Data Structures for Range ADT

Let’s try known data structures:
➢ Unsorted Array
➢ Sorted Array
➢ Sorted Linked List
➢ Hash table

1 4 6 7 10 13 15

Unsorted Array

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

O(n) ×

O(n) ×

O(1) V

O(1) V

7 10 4 13 1 6 15 3

delete (10)

Sorted Array

O(log(n)) V

O(log(n)) V

O(n) ×

O(n) ×

1 3 4 6 7 10 13 15

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

delete (6)

Sorted Linked List

O(n) ×

O(n) ×

O(n) ×

O(n) ×

1 3 4 6 7 9 15 3

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

delete (6)

Hash Table

Impossible ×

Impossible ×

O(1) V

O(1) V

4 7 6 3 1

10

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

Nothing works

We need something new

➢ We want efficient data structure for Local Range ADT
➢ None of the existing data structures work
➢ Sorted arrays are good for search but not for update

Binary Search

Record search questions

7

4

1 6

13

10 15

We get a tree

7

4

1 6

13

10 15

Binary Search Tree

D

B

A C

F

E G

< D > D

Tree levels and node depth

Level 0

Level 1

Level 2

Level 3

Depth: distance from the root -

how many edges to go from the root to a

depth = 0

depth = 1

depth = 2

depth = 3

Node height

h=3

h=2

h=1

h=0

h=0

h=1

h=0 h=0

Level 0

Level 1

Level 2

Level 3

Height: distance from the node to the bottom:

how many edges to go to the furthest leaf

depth = 0

depth = 1

depth = 2

depth = 3

Tree – recursive data structure

● Main element of the tree: node
● Each node contains data and an array of

links to the child nodes

typedef struct node {

int data;

struct node ** children;

[struct node * parent;]

} TreeNode;

class TreeNode:
def __init__(self, data):

self.data = data
self.children = []
[self.parent = None]

data

node_addr

Tree is defined by a single node

Tree is either

● Null (empty tree)
● Root node which contains data and

links to child nodes

data

root

NULL

root

class TreeNode:
def __init__(self, data):

self.data = data
self.left = None
self.right = None
[self.parent = None]

typedef struct node {

int data;

struct node * left;

struct node * right;

[struct node * parent;]

} TreeNode;

Binary tree: at most 2 children

left

data: 15

right

Algorithm Height (node)

if node is Null :

return 0

if node.left is Null and node.right is Null:

return 0

return 1 + Max(Height(node.left),Height(node.right))

Recursive algorithms are common

Algorithm Size (tree)

if tree is Null

return 0

return 1 + Size(tree.left) + Size(tree.right)

How do we list all the nodes in the tree?

Two types of traversals:

❖ Depth-first: we completely traverse one sub-tree
before exploring a sibling sub-tree

❖ Breadth-first: We traverse all nodes at one level
before progressing to the next level

Tree traversals

➢ In-order
➢ Pre-order
➢ Post-order

Depth-first tree traversals

Depth-first: in-order

Algorithm InOrderTraversal(tree)

if tree = Null :

return

InOrderTraversal(tree.left)

print (tree.key)

InOrderTraversal(tree.right)

left - me - right

1

2

3

In-order

D

B

A C

F

E G

A B C D E F G

In-order

D

B

A C

F

E G

A B C D E F G
me, node D

left subtree of D right subtree of D

Depth-first: pre-order

Algorithm PreOrderTraversal(tree)

if tree is null:

return

print (tree.key)

PreOrderTraversal(tree.left)

PreOrderTraversal(tree.right)

me first
me - left -right

2

1

3

Pre-order

D

B

A C

F

E G

D B A C F E G

Pre-order

D

B

A C

F

E G

D B A C F E G
me, node D

left subtree of D right subtree of D

Depth-first: postorder

Algorithm PostOrderTraversal(tree)

if tree is null:

return

PostOrderTraversal(tree.left)

PostOrderTraversal(tree.right)

print(tree.key)

children first
left-right-me

1

3

2

Post-order

D

B

A C

F

E G

A C B E G F D

Post-order

D

B

A C

F

E G

A C B E G F D
me, node D

left subtree of D right subtree of D

Breadth first

D

B

A C

F

E G

Level traversal:
D

B F
A C E G

Algorithm BreadthFirstTraversal(tree)

if tree is null:
return

Queue q
q.Enqueue(tree)
while not q.Empty() :

node ← q.Dequeue()

Print(node)

if node.left != null:
q.Enqueue(node.left)

if node.right != null:
q.Enqueue(node.right)

Breadth first: level
traversal

D

B

A C

F

E G

Queue: D

Output:

Breadth first: level
traversal

D

B

A C

F

E G

Queue:

Output: D

Breadth first: level
traversal

D

B

A C

F

E G

Queue: B F

Output: D

Breadth first: level
traversal

D

B

A C

F

E G

Queue: B F

Output: D

Breadth first: level
traversal

D

B

A C

F

E G

Queue: F

Output: D B

Breadth first: level
traversal

D

B

A C

F

E G

Queue: F A C

Output: D B

Breadth first: level
traversal

D

B

A C

F

E G

Queue: F A C

Output: D B

Breadth first: level
traversal

D

B

A C

F

E G

Queue: A C

Output: D B F

Breadth first: level
traversal

D

B

A C

F

E G

Queue: A C E G

Output: D B F

Breadth first: level
traversal

D

B

A C

F

E G

Queue: A C E G

Output: D B F

Breadth first: level
traversal

D

B

A C

F

E G

Queue: C E G

Output: D B F A

Breadth first: level
traversal

D

B

A C

F

E G

Queue: C E G

Output: D B F A

Breadth first: level
traversal

D

B

A C

F

E G

Queue: E G

Output: D B F A C

Breadth first: level
traversal

D

B

A C

F

E G

Queue: E G

Output: D B F A C

Breadth first: level
traversal

D

B

A C

F

E G

Queue: G

Output: D B F A C E

Breadth first: level
traversal

D

B

A C

F

E G

Queue: G

Output: D B F A C E

Breadth first: level
traversal

D

B

A C

F

E G

Queue: empty

Output: D B F A C E G

Tree-traversal Puzzle 1

Guess the word: in-order traversal

E

L

A L

G

R Y

Tree-traversal Puzzle 2

Guess the word: pre-order traversal

L

A

R G

E

L Y

Tree-traversal Puzzle 3

Guess the word: post-order traversal

Y

L

G A

R

L E

Tree-traversal Puzzle 4

Guess the word: breadth-first traversal

R

E

A L

G

L Y

