ADT and Data structures. Local Range ADT

[Review 02.05]
by Marina Barsky

Example 1: Closest Height

Find 3 people in your class whose height is closest to yours.

Example 2: Date Ranges

Find all emails received in a given period

Inbox					
FROM	KNOW	T0	Subject	SENT TIME V	
"lawiki.i2p admin" <J5uF>		Bote User <uhod>	hi	Unknown	E
anonymous		Bote User <uhod>	Sanders 2016	Aug 30, 2015 3.27 PM	-
anonymous		Bote User <uhOd>	\|2PCon 2016	Aug 30, 2015 3:25 PM	-
Anon Developer <gvbM>		Bote User <uhod>	Re: Bote changess	Aug 30, 2015 2:54 PM	-
I2P User <uUUx>		Bote User <uhod>	Hello World!	Aug 30, 2015 2:51 PM	-

Example 3: Partial Matching

Find all words that start with some given prefix

Abstract Data Type: Local Range

Specification

A Local Range ADT stores a number of elements each with a key and supports the following operations:
$\rightarrow \quad$ RangeSearch(lo, hi): returns all elements with keys between 10 and $h i$

Reduces to find(x) if $x=l o=h i$
$\rightarrow \quad$ NearestNeighbors (x, k) : returns k elements with keys closest to x

$$
\text { when } k=1 \text { : }
$$

you want successor(x)
or you want predecessor(x)

Sorted Keys

The best idea for these queries is to store the keys in a sorted order

Dynamic Data Structure

> Store keys in sorted order
> Also want to be able to add/remove keys efficiently:
$\operatorname{Insert}(X)$: Adds an element with key X
Delete (x): Removes the element with key x

Data Structures for Range ADT

\section*{| 1 | 4 | 6 | 7 | 10 | 13 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

Let's try known data structures:
> Unsorted Array
> Sorted Array
> Sorted Linked List
> Hash table

Unsorted Array

\rightarrow Range Search:
$O(n) \times$
$\rightarrow \quad$ Nearest Neighbors:
$O(n) \times$
\rightarrow Insert:
\rightarrow Delete:
$O(1) \mathrm{V}$
$O(1) \vee$

delete (10)

Sorted Array

$\rightarrow \quad$ Range Search: $\quad O(\log (n)) \vee$
$\rightarrow \quad$ Nearest Neighbors: $\quad O(\log (n)) \vee$
\rightarrow Insert: $\quad O(n) \times$
\rightarrow Delete: $\quad O(n) \times$

delete (6)

Sorted Linked List

\rightarrow Range Search:
$O(n) \times$
$\rightarrow \quad$ Nearest Neighbors:
$O(n) \times$
\rightarrow Insert:
\rightarrow Delete:
$O(n) \times$
$O(n) \times$

delete (6)

Hash Table

Nothing works

> We want efficient data structure for Local Range ADT
> None of the existing data structures work
> Sorted arrays are good for search but not for update

We need something new

Binary Search

Record search questions

We get a tree

Binary Search Tree

Tree levels and node depth

Depth: distance from the root how many edges to go from the root to a

Node height

Height: distance from the node to the bottom: how many edges to go to the furthest leaf

Tree - recursive data structure

- Main element of the tree: node
- Each node contains data and an array of
- links to the child nodes
node_addr

typedef struct node \{
int data;
struct node ** children;
[struct node * parent;]
class TreeNode:

$$
\begin{aligned}
& \text { def } \text { _init__(self, data) : } \\
& \text { self.data = data } \\
& \text { self.children = [] } \\
& {[\text { self.parent }=\text { None }] }
\end{aligned}
$$

\} TreeNode;

Tree is defined by a single node

Tree is either

- \quad Null (empty tree)
- Root node which contains data and links to child nodes

Binary tree: at most 2 children

typedef struct node \{
int data;
struct node * left;
struct node * right;
[struct node * parent;]
class TreeNode: def __init__(self, data): self.data = data self.left = None self.right = None [self.parent = None]
\} TreeNode;

Recursive algorithms are common

Algorithm Height (node)

if node is Null :
return 0
if node.left is Null and node.right is Null:
return 0
return $1+\operatorname{Max}(H e i g h t(n o d e . l e f t), H e i g h t(n o d e . r i g h t))$

Algorithm Size (tree)

if tree is Null
return 0
return $1+\operatorname{Size}($ tree.left $)+\operatorname{Size}($ tree.right)

Tree traversals

How do we list all the nodes in the tree?

Two types of traversals:

* Depth-first: we completely traverse one sub-tree before exploring a sibling sub-tree
* Breadth-first: We traverse all nodes at one level before progressing to the next level

Depth-first tree traversals

\author{

- In-order
 - Pre-order
 > Post-order
}

Depth-first: in-order

Algorithm InOrderTraversal(tree)

if tree = Null :
return
InOrderTraversal(tree.left)
print (tree.key)
InOrderTraversal(tree.right)

In-order

ABCDEFG

In-order

me, node D
A B C D E F G
left subtree of D
right subtree of D

Depth-first: pre-order

Algorithm PreOrderTraversal(tree)

if tree is null:

return

print (tree.key)
PreOrderTraversal(tree.left)
PreOrderTraversal(tree.right)
me first
me - left -right

Pre-order

D B ACFEG

Pre-order

me, node D
D

BAC
left subtree of D

F E G
right subtree of D

Depth-first: postorder

Algorithm PostOrderTraversal(tree)

if tree is null: return
PostOrderTraversal(tree.left)
PostOrderTraversal(tree.right)
print(tree.key)

children first
left-right-me

Post-order

ACBEGFD

Post-order

me, node D

ACB

left subtree of D

E G F

D
right subtree of D

Breadth first

Level traversal:
D
B F
ACEG

Algorithm BreadthFirstTraversal(tree)

if tree is null: return

Queue q
q.Enqueue(tree)
while not q.Empty() :
node $\leftarrow q$.Dequeue()
Print(node)
if node.left!= null:
q.Enqueue(node.left)
if node.right!= null:
q.Enqueue(node.right)

Breadth first: level traversal

Queue: D
Output:

Breadth first: level traversal

Queue:
Output: D

Breadth first: level traversal

Queue: B F
Output: D

Breadth first: level traversal

Queue: B F
Output: D

Breadth first: level traversal

Queue: F
Output: D B

Breadth first: level traversal

Queue: F A C
Output: D B

Breadth first: level traversal

Queue: FA C
Output: D B

Breadth first: level traversal

Queue: A C
Output: D B F

Breadth first: level traversal

Queue: A C E G
Output: D B F

Breadth first: level traversal

Queue: A CEG
Output: D B F

Breadth first: level traversal

Queue: C E G
Output: D B F \underline{A}

Breadth first: level traversal

Queue: C E G
Output: D B F A

Breadth first: level traversal

Queue: E G
Output: D B F A C

Breadth first: level traversal

Queue: E G
Output: D B F A C

Breadth first: level traversal

Queue: G
Output: D B FACE

Breadth first: level traversal

Queue: \underline{G}
Output: D B F A C E

Breadth first: level traversal

Queue: empty
Output: D B FACE \underline{G}

Tree-traversal Puzzle 1

Guess the word: in-order traversal

Tree-traversal Puzzle 2

Guess the word: pre-order traversal

Tree-traversal Puzzle 3

Guess the word: post-order traversal

Tree-traversal Puzzle 4

Guess the word: breadth-first traversal

