
ADT and Data structures.

Binary Search Tree

[Review 02.06]

by Marina Barsky

Definition

Binary search tree is a binary tree with the following

property:

for each node with key x, all the nodes in its left

subtree have keys smaller than x, and all the keys in

its right subtree are greater or equal* to x.

3

1

2

5

4

C

A

B

E

D

*To simplify the discussion we will assume that all keys are unique, so the keys in
the right subtree are strictly greater than x

Which one is a Binary Search Tree?

4

7

5

6

8

2

1 3

4

3

2

7

5

6

5

2

1

4

3

8

6

71

A B C

BST Node

BST Node:

Key

Left

Right

Optional: Parent

Key: 6

Left Right

Parent

BST: read operations

➢ Find (k): returns tree node with key k

➢ Successor (k): finds and returns the node in the tree with the

smallest key among all keys greater than k - i.e. finds the node

with the next to k key in the list of sorted keys

➢ Predecessor (k): same as successor, but from the left of k -

finds and returns the node with the key immediately preceding

k in the sorted list of all keys

➢ Range (lo, hi): returns the list of all tree nodes with keys

between lo and hi (inclusive)

All these operations do not modify the tree

Operation Find

Input:Key k, Root R of BST

Output: The node with key k

Algorithm Find (k, R)

if R is Null or R.Key = k:

return R

if R.Key > k :

return Find(k, R.Left)

else if R.Key < k :

return Find(k, R.Right)

Also works for the case of missing key

7

4

1 6

13

10 15

5

Missing key: find(5, R)

Note: If you stop before reaching null pointer, you
find the place in the tree where k would fit.

Operation Successor

Input: key k

Output: The node in the tree with the
next larger key.

Given a node N in a Binary Search Tree

- find nodes with adjacent keys

Operation Predecessor

Input: key k

Output: The node in the tree with the
next smaller key.

Operation Successor

Input: key k

Output: The node in the tree with the
next larger key.

● We want to find the node with the key which is
closest to k from above

● We would need a sub-operation get_min to solve
this problem

K

Sorted keys

> k< k

Sub-operation: get_min (node N)

p

...

... ...

X

... ...

...

N

➢ We want to find min key
in a subtree rooted at N

Sub-operation: get_min (node N)

p

...

... ...

X

... ...

...

N

➢ We want to find min key
in a subtree rooted at N

➢ Among all descendants
of N the only keys that
are < X are in the left
subtree of N

Example: get_min (N)

5

3

1 4

9

12

10 13

14

8

N ➔ Does node N have
left child?
Yes → there is a
key smaller than 5

➔ Set N to be the left
child and ask the
same question

Example: get_min (N)

5

3

1 4

9

12

10 13

14

8

N

➔ Does node N have
left child?
Yes → there is a
key smaller than 3

➔ Set N to be the left
child and ask the
same question

Example: get_min (N)

5

3

1 4

9

12

10 13

14

8

N

➔ Does node N have
left child?
No → there is no
key smaller than N

Follow the leftmost path in the tree - until no more left child

Algorithm Get_min (N)

if N.Left = null:
return N

else:

return Get_min (N.Left)

p

...

... ...

k

... ...

Successor (k)
First, find node N with key k

Case 1: N has right child

p < kAll these keys
are even < p

nodes < k

➢ In this situation all keys >
k are in the right subtree
of N

p

k

... ...

...

... ...

Case 1: Node N has the right child, but also
has a parent with p > k

s ...

> p< p

> k and < p

➢ In this situation there are also
keys > k in the parent of N and
in the right subtree of the
parent

➢ However we are looking for the
smallest among these keys

➢ The min among all keys > k is
again in the right subtree of N -
because the keys in this
subtree are precisely between
k and p

p

k

... ...

...

... ...

Case 1: Node N has the right child, but also
has a parent with p > k

s ...

> p< p

> k and < p

➢ The goal then becomes to find
the smallest among all the keys
in the right subtree of N

➢ Use get_min (N.right)

Algorithm Successor (k, R)

if R.Key = k : # found N

if R.Right != null:
return Get_min (R.Right)

...

if k < R.Key: # continue searching for N

return Successor (k, R.Left)

...

if k > R.Key : # continue searching for N

return Successor (k, R.Right)

...

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

R ➔ Follow the left subtree:
5 < 14

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

R

➔ Follow the left subtree:
5 < 14

➔ Found 5

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

R

R.right

➔ Follow the left subtree:
5 < 14

➔ Found 5

➔ N has right child

Example: successor (5, R)

5

3

4

9

12

10 13

14

8

R

R.right

min

➔ Follow the left subtree:
5 < 14

➔ Found 5

➔ N has right child

➔Min in the subtree
rooted at 9 is the
successor of 5

successor (5, R)→8

p

k

...

...

... ...

Case 2: Node N with key k
does not have the right child

> p< p

➢ In this case the successor of N is
among N’s ancestors

➢ Namely the last time we took
the turn to left subtree - the
key at the root of this subtree is
the successor of N

➢ If we do not have a parent field
in our Node, then we cannot
recover this parent

➢ Instead, we will keep track of
the last parent when we took
the left turn in the search for N

Algorithm Successor (k, R, S)

if R.Key = k : # found N

if R.Right != null:
return get_min (R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S)

if k > R.Key:

return Successor (k, R.Right,S)

You start this algorithm with R = root of BST
and S (successor) set to null

Example: Successor (10, R)

➔ 10 has right subtree
➔ Successor is the min in

this right subtree:
Successor (10) → 12

10

5

1 7

14

12 16

6

Example: Successor (6, R)

➔While searching for 6: we
update a possible candidate
for successor (first 10, then
7) - because we do not know
if N will have a right subtree
or not

➔ 6 does not have the right
subtree

➔ Successor is the last ancestor
of 6 when we moved into
the left subtree:

Successor (6) → 7

10

5

1 7

14

12 16

6

Example: Successor (16, R)

➔While searching for 16: we
never took the left turn

➔ 16 does not have the right
subtree

➔ 16 also does not have a
successor - it is the largest
key in the tree

Successor (16) → null

10

5

1 7

14

12 16

6

Operation Range

Input:Numbers x, y, root R

Output: A list of nodes with keys between x and y

Now that we know how to find a successor,
we can solve the range query

Algorithm RangeSearch (x , y , R)

L ← empty list

N ← Find(x , R)

while N is not Null and N.Key ≤ y

L ← L + N

N ← Successor (N.Key, R, Null)

return L

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Find 5
5 is within range

Result: 5

Example: range search (5, 13)

10

5

1 7

14

12 16

6 Find successor (5) → 6
6 is within range

Result: 5, 6

Example: range search (5, 13)

10

5

1 7

14

12 16

6
Find successor (6) → 7
7 is within range

Result: 5, 6, 7

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Find successor (7) → 10
10 is within range

Result: 5, 6, 7, 10

Example: range search (5, 13)

10

5

1 7

14

12 16

6
Find successor (10) → 12
12 is within range

Result: 5, 6, 7, 10, 12

Example: range search (5, 13)

10

5

1 7

14

12 16

6

Find successor (12) → 14
14 is outside range
Stop

Result: 5, 6, 7, 10, 12

BST: update operations

➢ Insert (k): creates a new node with key k and inserts it into the

appropriate position of BST

➢ Delete (k): deletes the node with key k such that the BST

property of the tree is preserved

We already have all the sub-operations to implement these

Operation Insert

Input: Key k

Output: Updated BST containing a new node N with key k

Algorithm Find (k, R)

if R is Null or R.Key = k:

return R

if R.Key > k :

return Find(k, R.Left)

else if R.Key < k :

return Find(k, R.Right)

We need to slightly modify Find

Algorithm Insert (k, R)

if R != Null and R.Key = k:

return ERROR

if R is Null:

return new Node(k)

if k < R.Key:

R.left = Insert(k, R.left)

return R

if k > R.Key :

R.right = Insert(k, R.right)

return R

Example: insert (16, R)

10

5

1 7

14

12

R

16 > R.key

Example: insert (16, R)

10

5

1 7

14

12

R

16 > R.key

Example: insert (16, R)

10

5

1 7

14

12

R

16 > R.key

R has no right child -
this is the place to
insert new node

Example: insert (16, R)

10

5

1 7

14

12

R
Update right child of
R and return updated
node 14

16

Operation Delete

Input: Key k

Output: BST without node N with key k

The most challenging algorithm in this module

Delete node N with key k

➢First, find N

➢Easy case (N has no children)

○Just detach N from the tree

3

1

2

5

4

Example: delete(4)

➢First, find N

➢Easy case (N has no children)

○Just detach N from the tree

3

1

2

5

4

Example: delete(4)

➢First, find N

➢Easy case (N has no children)

○Just detach N from the tree

3

1

2

5

Deleted

Delete node N with key k

➢Medium case (N has one child):

Just “splice out” node N

○ Its unique child assumes the
position previously occupied
by N – gets promoted to its
place

3

1

2

5

4

Example: delete(1)

➢Medium case (N has one child):

Just “splice out” node N

○ Its unique child assumes the
position previously occupied
by N – gets promoted to its
place

3

1

2

5

4

Example: delete(1)

➢Medium case (N has one child):

Just “splice out” node N

○ Its unique child assumes the
position previously occupied
by N – gets promoted to its
place

3

2 5

4
1 is
deleted

Delete node N with key k

➢Difficult case (N has 2 children):
3

1

2

5

4

Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 1?
3

1

2

5

4

Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 1?
1

2 5

4
Not a BST!

Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 5?
3

1

2

5

4

Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 5?
5

1

2

4

Not a BST!

Delete node N with key k: difficult
case

➢Difficult case (N has 2 children):

○ We want to make as little
changes to the tree structure
as possible

○ Replace node N with its
successor (with the next
largest key)

3

1

2

5

4

Delete node N with key k: difficult
case

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ Luckily we know that N has
the right child

○ To find successor - look for a
min in its right subtree

3

1

2

5

4

Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

3

1

2

5

4 successor of 3

Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap values in N and its
successor

3

1

2

5

4 successor of 3

Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap values in N and its
successor

4

1

2

5

3

Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap values in N and its
successor

○ Remove successor: this would
be easy - why?

4

1

2

5

3

Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its
successor (with the next
largest key)

○ To find successor - look for a
min in its right subtree

○ Swap values in N and its
successor

○ Remove successor: this would
be easy - why?

4

1

2

5

3

The successor does not have a left child!

(it was a min in the right subtree - which was the last possible left node)

