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Definition

Binary search tree is a binary tree with the following 

property:

for each node with key x, all the nodes in its left 

subtree have keys smaller than x, and all the keys in 

its right subtree are greater or equal* to x.
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*To simplify the discussion we will assume that all keys are unique, so the keys in 
the right subtree are strictly greater than x



Which one is a Binary Search Tree?
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BST Node

BST Node:

Key

Left

Right

Optional: Parent

Key: 6
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Parent



BST: read operations

➢ Find (k): returns tree node with key k

➢ Successor (k): finds and returns the node in the tree with the 

smallest key among all keys greater than k - i.e. finds the node 

with the next to k key in the list of sorted keys

➢ Predecessor (k): same as successor, but from the left of k -

finds and returns the node with the key immediately preceding 

k in the sorted list of all keys

➢ Range (lo, hi): returns the list of all tree nodes with keys 

between lo and hi (inclusive) 

All these operations do not modify the tree



Operation Find

Input:Key k,  Root R of BST 

Output: The node with key k



Algorithm Find (k, R)

if R is Null or R.Key =  k:  

return R

if R.Key > k :

return Find(k, R.Left)  

else if R.Key < k :

return Find(k, R.Right)

Also works for the case of missing key
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Missing key: find(5, R)

Note: If you stop before reaching null pointer, you  
find the place in the tree where k would fit.



Operation Successor

Input: key k

Output: The node in the tree with the 
next larger key.

Given a node N in a Binary Search Tree 

- find nodes with adjacent keys

Operation Predecessor

Input: key k

Output: The node in the tree with the 
next smaller key.



Operation Successor

Input: key k

Output: The node in the tree with the 
next larger key.

● We want to find the node with the key which is 
closest to k from above

● We would need a sub-operation get_min to solve 
this problem

K

Sorted keys

> k< k



Sub-operation: get_min (node N)
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➢ We want to find min key 
in a subtree rooted at N



Sub-operation: get_min (node N)
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➢ We want to find min key 
in a subtree rooted at N

➢ Among all descendants 
of N the only keys that 
are < X are in the left 
subtree of N



Example: get_min (N)
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N ➔ Does node N have 
left child?
Yes → there is a 
key smaller than 5

➔ Set N to be the left 
child and ask the 
same question



Example: get_min (N)
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➔ Does node N have 
left child?
Yes → there is a 
key smaller than 3

➔ Set N to be the left 
child and ask the 
same question



Example: get_min (N)
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➔ Does node N have 
left child?
No → there is no 
key smaller than N

Follow the leftmost path in the tree - until no more left child



Algorithm Get_min (N)

if N.Left = null:
return N

else:

return Get_min (N.Left)
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Successor (k) 
First, find node N with key k

Case 1: N has right child

p < kAll these keys 
are even < p

nodes < k

➢ In this situation all keys > 
k are in the right subtree 
of N
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Case 1: Node N has the right child, but also 
has a parent with p > k

s ...

> p< p

> k and < p

➢ In this situation there are also 
keys > k in the parent of N and 
in the right subtree of the 
parent

➢ However we are looking for the 
smallest among these keys

➢ The min among all keys > k is 
again in the right subtree of N -
because the keys in this 
subtree are precisely between 
k and p
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Case 1: Node N has the right child, but also 
has a parent with p > k

s ...

> p< p

> k and < p

➢ The goal then becomes to find 
the smallest among all the keys 
in the right subtree of N

➢ Use get_min (N.right)



Algorithm Successor (k, R)

if R.Key = k : # found N

if R.Right != null:
return Get_min (R.Right)

...

if k < R.Key: # continue searching for N

return Successor (k, R.Left)

...   

if k > R.Key : # continue searching for N

return Successor (k, R.Right)  

...



Example: successor (5, R)
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R ➔ Follow the left subtree: 
5 < 14



Example: successor (5, R)

5

3

4

9

12

10 13

14

8

R

➔ Follow the left subtree: 
5 < 14

➔ Found 5



Example: successor (5, R)
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R.right

➔ Follow the left subtree: 
5 < 14

➔ Found 5

➔ N has right child



Example: successor (5, R)
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R.right

min

➔ Follow the left subtree: 
5 < 14

➔ Found 5

➔ N has right child

➔Min in the subtree 
rooted at 9 is the 
successor of 5

successor (5, R)→8
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Case 2: Node N with key k
does not have the right child

> p< p

➢ In this case the successor of N is 
among N’s ancestors

➢ Namely the last time we took 
the turn to left subtree - the 
key at the root of this subtree is 
the successor of N

➢ If we do not have a parent field 
in our Node, then we cannot 
recover this parent

➢ Instead, we will keep track of 
the last parent when we took 
the left turn in the search for N



Algorithm Successor (k, R, S)

if R.Key = k : # found N

if R.Right != null:
return get_min (R.Right)

else:

return S

if k < R.Key : # left turn

S ← R # remember the parent

return Successor (k, R.Left,S) 

if k > R.Key:

return Successor (k,  R.Right,S)  

You start this algorithm with R = root of BST 
and S (successor) set to null



Example: Successor (10, R)

➔ 10 has right subtree
➔ Successor is the min in 

this right subtree:
Successor (10) → 12
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Example: Successor (6, R)

➔While searching for 6: we 
update a possible candidate 
for successor (first 10, then 
7) - because we do not know 
if N will have a right subtree 
or not

➔ 6 does not have the right 
subtree

➔ Successor is the last ancestor 
of 6 when we moved into 
the left subtree:

Successor (6) → 7
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Example: Successor (16, R)

➔While searching for 16: we 
never took the left turn

➔ 16 does not have the right 
subtree

➔ 16 also does not have a 
successor - it is the largest 
key in the tree

Successor (16) → null
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Operation Range 

Input:Numbers x, y, root R

Output: A list of nodes with keys between x and y

Now that we know how to find a successor, 
we can solve the range query



Algorithm RangeSearch (x , y , R)

L ← empty list

N ← Find(x , R)  

while N is not Null and N.Key ≤ y 

L ← L + N

N ← Successor (N.Key, R, Null)

return L



Example: range search (5, 13)
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Example: range search (5, 13)
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Find 5
5 is within range

Result: 5



Example: range search (5, 13)
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6 Find successor (5) → 6
6 is within range

Result: 5, 6



Example: range search (5, 13)
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Find successor (6) → 7
7 is within range

Result: 5, 6, 7



Example: range search (5, 13)
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Find successor (7) → 10
10 is within range

Result: 5, 6, 7, 10



Example: range search (5, 13)
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Find successor (10) → 12
12 is within range

Result: 5, 6, 7, 10, 12



Example: range search (5, 13)
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Find successor (12) → 14
14 is outside range
Stop

Result: 5, 6, 7, 10, 12



BST: update operations

➢ Insert (k): creates a new node with key k and inserts it into the 

appropriate position of BST 

➢ Delete (k): deletes the node with key k such that the BST 

property of the tree is preserved

We already have all the sub-operations to implement these



Operation Insert

Input:  Key k

Output: Updated BST containing a new node N with key k 



Algorithm Find (k, R)

if R is Null or R.Key =  k:  

return R

if R.Key > k :

return Find(k, R.Left)  

else if R.Key < k :

return Find(k, R.Right)

We need to slightly modify Find



Algorithm Insert (k, R)

if R != Null and R.Key =  k:  

return ERROR

if R is Null:

return new Node(k)

if k < R.Key:

R.left = Insert( k, R.left)

return R

if k > R.Key :

R.right = Insert( k, R.right)

return R



Example: insert (16, R)
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Example: insert (16, R)
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Example: insert (16, R)
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16 > R.key

R has no right child -
this is the place to 
insert new node



Example: insert (16, R)
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Operation Delete

Input: Key k

Output: BST without node N with key k 

The most challenging algorithm in this module



Delete node N with key k

➢First, find N

➢Easy case (N has no children)

○Just detach N from the tree
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Example: delete(4)

➢First, find N

➢Easy case (N has no children)

○Just detach N from the tree

3

1

2

5

4



Example: delete(4)

➢First, find N

➢Easy case (N has no children)

○Just detach N from the tree
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Delete node N with key k

➢Medium case (N has one child):

Just “splice out” node N

○ Its unique child assumes the  
position previously occupied 
by  N – gets promoted to its 
place
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Example: delete(1)

➢Medium case (N has one child):

Just “splice out” node N

○ Its unique child assumes the  
position previously occupied 
by  N – gets promoted to its 
place

3

1

2

5

4



Example: delete(1)

➢Medium case (N has one child):

Just “splice out” node N

○ Its unique child assumes the  
position previously occupied 
by  N – gets promoted to its 
place
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Delete node N with key k

➢Difficult case (N has 2 children):
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 1?
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 1?
1
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Not a BST!



Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 5?
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Promote 5?
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Not a BST!



Delete node N with key k: difficult 
case

➢Difficult case (N has 2 children):

○ We want to make as little 
changes to the tree structure 
as possible

○ Replace node N with its 
successor (with the next 
largest key)
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Delete node N with key k: difficult 
case

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ Luckily we know that N has 
the right child

○ To find successor - look for a 
min in its right subtree
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap values in N and its 
successor
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap values in N and its 
successor
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap values in N and its 
successor

○ Remove successor: this would 
be easy - why?
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Example: delete(3)

➢Difficult case (N has 2 children):

○ Replace node N with its 
successor (with the next 
largest key)

○ To find successor - look for a 
min in its right subtree

○ Swap values in N and its 
successor

○ Remove successor: this would 
be easy - why?
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The successor does not  have a left child!

(it was a min in the right subtree - which was the last possible left node)


