ADT and Data structures.
Binary Search Tree

[Review 02.06]
by Marina Barsky

Definition
Binary search tree is a binary tree with the following

property:
for each node with key x, all the nodes in its left
subtree have keys smaller than x, and all the keys in

its right subtree are greater or equal* to x.

s @{ ®
*To simplify the discussion we will assume that all keys are unique, so the keys in
the right subtree are strictly greater than x

Which one Is a Binary Search Tree?

BST Node

BST Node:
Key
Left
Right

Optional:

Parent

Parent

Key: 6

Left Right

BST: read operations

> Find (k): returns tree node with key k

> Successor (k): finds and returns the node in the tree with the
smallest key among all keys greater than k - i.e. finds the node
with the next to k key in the list of sorted keys

> Predecessor (k): same as successor, but from the left of k -
finds and returns the node with the key immediately preceding
k in the sorted list of all keys

> Range (/o, hi): returns the list of all tree nodes with keys
between /o and hi (inclusive)

All these operations do not modify the tree

Operation Find

Input:Key k, Root R of BST
Output: The node with key k

Algorithm Find (k, R)

if Ris Null or R.Key = k:
return R
if R.Key > Kk
return Find(k, R.Left)
else 1if R.Key < Kk:
return Find(k, R.Right)

Also works for the case of missing key

Missing key: find(5, R)

7

W s

D ew s

Note: If you stop before reaching null pointer, you
find the place in the tree where k would fit.

Given a node N in a Binary Search Tree
- find nodes with adjacent keys

Operation Successor

Input: key k

Output: The node in the tree with the
next larger key.

Operation Predecessor

Input: key k

Output: The node in the tree with the
next smaller key.

<k > k

—@—< o ..
U Sorted keys

Operation Successor

Input: key k
Output: The node in the tree with the
next larger key.

e We want to find the node with the key which is
closest to k from above

e We would need a sub-operation get_min to solve
this problem

Sub-operation: get_min (node N)

> We want to find min key
@ in a subtree rooted at N
@/@
/\ /\

() ()G (o
SIS

Sub-operation: get_min (node N)

P

4

)

[\ [\

() ()G G
() () (o

> We want to find min key
in a subtree rooted at N

> Among all descendants
of N the only keys that
are < X are in the left
subtree of N

Example: get_min (N)

3

4

&

N

/

o

S

7

N

5

&

v

13

=> Does node N have
left child?

Yes = thereisa
key smaller than 5

=> Set N to be the left
child and ask the

same question

Example: get_min (N)

=> Does node N have
left child?

Yes = thereisa
key smaller than 3

=> Set N to be the left
child and ask the

same question

Example: get_min (N)

@ => Does node N have

left child?
a No - thereis no
\ key smaller than N

;N\

10 13

Follow the leftmost path in the tree - until no more left child

Algorithm Get_min (N)

if N.Left =null:
return N
else:
return Get min (N.Left)

Successor (k)
First, find node N with key k

Case 1: N has right child
> |n this situation all keys >
All these keys p<k k are in the rlght subtree

are even<p / Of N

/ \ nodes < k / \

) () (W

Case 1: Node N has the right child, but also
has a parent with p > k

@ > |n this situation there are also
>p keys > k in the parent of N and

in the right subtree of the
parent
>kand<p

% () > However we are looking for the
@ @ smallest among these keys
/N > The min among all keys > k is
@ @ again in the right subtree of N -
because the keys in this

subtree are precisely between
kand p

Case 1: Node N has the right child, but also
has a parent with p > k

@ > The goal then becomes to find
<p / \>p the smallest among all the keys
@ @ in the right subtree of N
> Use get_min (N.right)
/ \ >kand<p / \ -

Algorithm Successor (k, R)

if R.Key =Kk
if R.Right !=null:
return Get min (R.Right)

if k < R.Key:
return Successor (k, R.Left)

if kK> R.Key:
return Successor (k, R.Right)

Example: successor (5, R)

- R -> Follow the left subtree:
5<14

h

7N

&
ae

(©)

/

AN

E

5

Example: successor (5, R)

= Follow the left subtree:
5<14

-=> Found 5

Example: successor (5, R)

@ => Follow the left subtree:
5<14
< R - Found 5
/ —> N has right child
@ Q <«— Ruright
48 12

Example: successor (5, R)

@ = Follow the left subtree:
5<14
«— R

-=> Found 5

/ \ => N has right child

@ @ e => Min in the subtree
\ \ rooted at 9 is the
@ successor of 5
\
@ successor (5, R)—>8

Case 2: Node N with key k
does not have the right child

> |n this case the successor of N is
among N’s ancestors

> Namely the last time we took
the turn to left subtree - the
key at the root of this subtree is
the successor of N

> |f we do not have a parent field
in our Node, then we cannot
recover this parent

> |nstead, we will keep track of
the last parent when we took
the left turn in the search for N

Algorithm Successor (k, R, S)
if R.Key =Kk
if R.Right !=null:
return get min (R.Right)
else:
return S
if kK < R.Key:
S<—R
return Successor (k, R.Left, S)
if kK > R.Key:
return Successor (k, R.Right, S)

You start this algorithm with R = root of BST
and S (successor) set to null

Example: Successor (10, R)

=> 10 has right subtree
=> Successor is the min in

\ this right subtree:

@ Successor (10) - 12

D08 s

6

Example: Successor (6, R)

RN

5

§ 0

6

=> While searching for 6: we
update a possible candidate
for successor (first 10, then
7) - because we do not know
if N will have a right subtree
or not

=> 6 does not have the right
subtree

=> Successor is the last ancestor
of 6 when we moved into
the left subtree:

Successor (6) > 7

Example: Successor (16, R)

7N

5

B0E

6

=> While searching for 16: we
never took the left turn

=> 16 does not have the right
subtree

—> 16 also does not have a
successor - it is the largest
key in the tree

Successor (16) = null

Now that we know how to find a successor,
we can solve the range query

Operation Range

Input:Numbers X, vy, root R
Output: A list of nodes with keys between x and y

Algorithm RangeSearch (x , v, R)
L — empty list

N «<— Find(x , R)
while N is not Null and N.Key <V
L—L+ N
N < Successor (N.Key, R, Null)
return L

Example: range search (5, 13)

5

S08 @
6)

Example: range search (5, 13)

inds TN

5 is within range @

[\ [\

D (D@ s
0

Result: 5

Example: range search (5, 13)

7N

5

[\

Find successor (5) > 6
6 is within range

Result: 5, 6

Example: range search (5, 13)

Result: 5, 6, 7

7N

5

[[\

L@@ s
o

Find successor (6) > 7
7 is within range

Example: range search (5, 13)

Find successor (7) - 10
10 is within range

7N

5

[[\

1) (1@ s
0

Result: 5, 6, 7, 10

Example: range search (5, 13)

Find successor (10) - 12
12 is within range

Result: 5, 6, 7, 10, 12

Example: range search (5, 13)

@/ \' Find successor (12) - 14
Blotet
)

Result: 5, 6, 7, 10, 12

BST: update operations

> [nsert (k): creates a new node with key k and inserts it into the
appropriate position of BST

> Delete (k): deletes the node with key k such that the BST
property of the tree is preserved

We already have all the sub-operations to implement these

Operation Insert

Input: Key Kk
Output: Updated BST containing a new node N with key k

Algorithm Find (k, R)

if Ris Null or R.Key = k:
return R
if R.Key > Kk
return Find(k, R.Left)
else 1if R.Key < Kk:
return Find(k, R.Right)

We need to slightly modify Find

Algorithm Insert (k, R)

if R!= Null and R.Key = Kk:
return ERROR
if Ris Null:
return new Node(k)
if k < R.Key:
R.1eft = Insert(k, R.1eft)
return R
if k > R.Key:
R.right = Insert(k, R.right)
return R

Example: insert (16, R)

@

/ \\16 > R.key

5

4

1) (a2

Example: insert (16, R)

\

S

/ 16 > R.key

4

1) (a2

Example: insert (16, R)

\

S

5 e

/ 16 > R.key

R has no right child -
this is the place to

insert new node

Example: insert (16, R)

\

S

R
@ @ Update right child of
R and return updated

/ node 14

1) (712 e

Operation Delete

Input: Key Kk
Output: BST without node N with key k

The most challenging algorithm in this module

Delete node N with key k

>First, find N
@ >Easy case (N has no children)

@ oJust detach N from the tree

Example: delete(4)

>First, find N
@ >Easy case (N has no children)

7N

: : oJust detach N from the tree

\ 4

2)(4)

Example: delete(4)

>First, find N
@ >Easy case (N has no children)

7N

: : oJust detach N from the tree

\

@ Deleted

Delete node N with key k
@ >Medium case (N has one child):
Just “splice out” node N
o Its unique child assumes the
position previously occupied
\ 4 by N —gets promoted to its
DI

Example: delete(1)

@ >Medium case (N has one child):
/ \ Just “splice out” node N

o Its unique child assumes the

@ position previously occupied

\ 4 by N —gets promoted to its
OICTE.

Example: delete(1)

@ >Medium case (N has one child):
/ \ Just “splice out” node N
o Its unique child assumes the
position previously occupied

4 by N —gets promoted to its
lis
deleted @ place

Delete node N with key k

@ > Difficult case (N has 2 children):

7N

ORI
2

Example: delete(3)

@ > Difficult case (N has 2 children):
O Promote 1?

7N

R
2

Example: delete(3)

@ > Difficult case (N has 2 children):
O Promote 1?

TN

® >

4

Not a BST! @

Example: delete(3)

@ > Difficult case (N has 2 children):
O Promote5?

7N

ORI
2

Example: delete(3)

@ > Difficult case (N has 2 children):
O Promote5?

7N

1 @

\

@ Not a BST!

Delete node N with key k: difficult

case
@ > Difficult case (N has 2 children):
/ \ o We want to make as little

changes to the tree structure
@ @ as possible
\ 4 O Replace node N with its
@ @ successor (with the next

largest key)

Delete node N with key k: difficult

case
@ > Difficult case (N has 2 children):
O Replace node N with its
/ \ successor (with the next
@ @ largest key)

\ 4 O Luckily we know that N has

@ @ the right child

o To find successor - look for a
min in its right subtree

Example: delete(3)

@ > Difficult case (N has 2 children):
/ \ O Replace node N with its

successor (with the next
@ @ largest key)
\ 4 O To find successor - look for a
@ @) min in its right subtree

Example: delete(3)

@ > Difficult case (N has 2 children):

O Replace node N with its
/ \ successor (with the next
@ @ largest key)

\ / O To find successor - look for a

@ @ . min in its right subtree

o Swap valuesin N and its
successor

Example: delete(3)

@ > Difficult case (N has 2 children):

O Replace node N with its
/ \ successor (with the next
@ @ largest key)

\ / O To find successor - look for a

@ @ min in its right subtree

o Swap valuesin N and its
successor

Example: delete(3)

@ > Difficult case (N has 2 children):

O Replace node N with its
/ \ successor (with the next
@ largest key)

O To find successor - look for a
@@/ min in its right subtree
o Swap valuesin N and its

SUCCesSsor

O Remove successor: this would
be easy - why?

Example: delete(3)

@ > Difficult case (N has 2 children):

O Replace node N with its
/ \ successor (with the next
@ largest key)

O To find successor - look for a
@@/ min in its right subtree
o Swap valuesin N and its
successor

O Remove successor: this would
be easy - why?
The successor does not have a left child!

(it was a min in the right subtree - which was the last possible left node)

