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Recap: Definition

Binary search tree is a binary tree with the following 

property:

for each node with key x, all the nodes in its left 

subtree have keys smaller than x, and all the keys in 

its right subtree are greater than x.
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Recap: Operations on BST

➢ Find (k)

➢ Successor (k)/Predecessor (k)

➢ Insert (k)

➢ Delete (k)

How long does each operation take? 



Example: find (k)

find (5)

Total questions asked before we reach 5: 4
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Recap: node depth

6

4

2

1 3

5

8

7 9

Level 0

Level 1

Level 2

Level 3

Distance from the root: 

how many edges to go from the root to a given node

depth = 0

depth = 1

depth = 2

depth = 3



Recap: height of a subtree rooted at 

node v
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Distance from the node to the bottom:
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Complexity: find (k)

find (5)

● The number of operations is the depth of the node in 
question

● In the worst case bounded by the height of the tree
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Complexity: find (k)

find (5)

● The complexity of all BST operations is O(h)
● What is the height of the tree in terms of n - number of 

nodes?
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Complexity: O (n)

find (4)

The height can be as big as O(n) !
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We could do O(n) before: 

O(log(n)) V

O(log(n)) V

O(n) ×

O(n) ×

➔ Range Search:  

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

Sorted Linked List

O(n) ×

O(n) ×

O(n) ×

O(n) ×

➔Range Search:  

➔Nearest Neighbors:  

➔Insert:

➔Delete:

Sorted Array



In search for balance

➢ The Binary Search Tree of n nodes which has height 

O(log n) is called a Balanced Binary Search Tree (BBST)

➢ To achieve O(log n) time on all operations - we need to 

keep our tree balanced

➢We will perform local restructuring of the nodes to 

always keep the height of the tree O(log n)



Completing the tree
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To make it easier to argue about balance - let’s make each BST 

node have exactly 2 children

If there is no left/right child - we add a special NULL node



Redefining internal nodes
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Now each node that stores a key becomes an internal node

And each external (leaf) node is a NULL node which does not 

store a key



The height also changes accordingly
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Each external node has height 0



Defining balance

➢ One possible definition:

For every internal node v, the heights of the children of v may 

differ by at most 1

➢ That is, if a node v has children, x and y, then |h(x) − h(y)| ≤ 1.

➢ That implies that we must keep track of the current height for 

each node of the BBST



How the balance can be destroyed

We start with a perfectly balanced 

tree
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How the balance can be destroyed

We insert key 2

The tree is still balanced
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How the balance can be destroyed

We insert key 1

The root has 2 children x and y and 

the height of the corresponding 

subtrees differs by 2

If we now add 0 - we will make it even 

more unbalanced
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How the balance can be destroyed

We do not leave the tree like that -

we rearrange the heavier branch that 

resulted from adding 1

If we rebalance on time, we will never 

need to deal with difference > 2

54

9133

22

11



Rebalancing

The imbalance in this case is caused by 

the newly added node 1 and is 

presented by the path 1, 2, 3 (3 being 

the first imbalanced node on this path)

We need to rearrange nodes 1,2,3 

They all can be left in the same tree 

branch (all are < 5) 

1<2<3: so if we pull 2 on top, then 1 will 

be its left child, and 3 its right child
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Rebalancing: rotation

This method of rearrangement is called 

a rotation

It is also called a trinode restructuring
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Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing 

order: x < y < z
z
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Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing 

order: x < y < z

Pull y to the top and make x its left 

child and z its right child
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Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child
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General trinode restructuring: left-heavy 

subtree

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z
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General trinode restructuring: left-heavy 

subtree

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z

Update heights (locally: in constant 

time)
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Trinode restructuring: right-heavy subtree 

the same idea

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z

Update heights along this branch 
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Trinode restructuring: right-heavy subtree

x z

3
4

21

The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z

Update heights along this branch 



Trinode restructuring: right-left-heavy 

subtree: the same idea
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z

Update heights along this branch 



Trinode restructuring: right-left-heavy 

subtree
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z

Update heights along this branch 



Trinode restructuring: left-right-heavy 

subtree: the same idea
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z

Update heights along this branch 



Trinode restructuring: left-right-heavy 

subtree
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The nodes x, y, z are in increasing 

order

Pull y to the top and make x its left 

child and z its right child

Reattach all 4 children (some of them 

can be NULL) to x and z

Update heights along this branch 



Definition

AVL tree is a Binary Search Tree 

with the following property: for 

every internal node v in AVL tree, the 

heights of the children of v differ by 

at most 1

I.e. if the children of v are x and y, 

then |h(x) − h(y)| ≤ 1
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*Named after inventors Adelson-Velsky and Landis

AVL trees*



AVL tree: insertion

First, we perform regular insertion 

into BST and end up filling up one of 

the NULL nodes with the new value
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AVL tree: insertion

External node becomes a new 

internal node

After the insertion, some internal 

nodes may become unbalanced
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AVL tree: rebalancing after insertion

We go up from the inserted node 

until we encounter the first 

unbalanced node v

Note that in order for a branch to 

become unbalanced, there are at 

least 2 nodes below v 
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AVL tree: rebalancing after insertion

We keep track of v and the 2 nodes 

encountered before we reach v, and 

we name them according to their 

relative order as x, y, z
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AVL tree: rebalancing after insertion

We then perform a rotation moving y

on top of x and z - according to 

trinode restructuring rules
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AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 84
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AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 84
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AVL tree: rebalancing after insertion

Perform rotation

84

91

63

52

7141

x

y

z

Child 1 Child 2 Child 3 Child 4



AVL tree: rebalancing after insertion

Reattach children
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AVL tree: rebalancing after insertion

Update height of rebalanced 

nodes x, y or z 

Note that the height of the 

children does not change and 

does not need to be updated
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The entire time of insertion is still O(tree height)



AVL tree: insertion summary

The rebalancing is local and involves only x, y, z - thus in constant 
time
The heavier subtree height is reduced by 1 - restoring AVL 
property for the parent node 
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AVL tree: deletion - similar idea
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By removing a node from AVL tree some nodes may become 
unbalanced
But this time the branch from which the node was removed 
becomes lighter than its sibling
We need to restructure the heavier sibling to reduce its height

83

62

51 71

0

Delete 9



AVL tree: rebalancing after deletion 

We move up the tree from the 
current NULL node until we 
encounter an internal node which is 
unbalanced
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AVL tree: rebalancing after deletion 

Then we move into the heavier 
subtree choosing the child with the 
larger height

We produce 3 nodes x, y, z to be 
restructured
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AVL tree: rebalancing after deletion 

We perform rotation around y 

This is accomplished with trinode 
restructuring as before
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AVL tree: rebalancing after deletion 

Trinode restructuring: detach 
children of x, y, z
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AVL tree: rebalancing after deletion 

Move y on top and reattach 4 
children
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AVL tree: rebalancing after deletion
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We fixed the imbalance in left subtree by increasing the height of 
the right child of the root by 1



AVL tree with n keys has height O(log n)

Theorem

For the proof refer to Chapter 4.2 of the provided 
book chapter



Many more Balanced Search Trees exist

Red-Black trees: wikipedia link

Splay trees: wikipedia link

B-trees: wikipedia link

...

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/B%2B_tree

