Maintaining Balance:
 Balanced Binary Search Trees (BBST)

[Review 02.07]
By Marina Barsky

Recap: Definition

Binary search tree is a binary tree with the following property:
for each node with key \boldsymbol{x}, all the nodes in its left subtree have keys smaller than x, and all the keys in its right subtree are greater than x .

Recap: Operations on BST

$>$ Find (k)
$>$ Successor (k)/Predecessor (k)
$>$ Insert (k)
$>$ Delete (k)

How long does each operation take?

Example: find (k)

find (5)

Total questions asked before we reach 5: 4

Recap: node depth

Distance from the root:
how many edges to go from the root to a given node

Recap: height of a subtree rooted at node \boldsymbol{v}

Distance from the node to the bottom: how many edges to go to the furthest leaf

Complexity: find (k)

find (5)

- The number of operations is the depth of the node in question
- In the worst case bounded by the height of the tree

Complexity: find (k)

find (5)

- The complexity of all BST operations is $\mathrm{O}(h)$
- What is the height of the tree in terms of n-number of nodes?

Complexity: O (n)

find (4)

The height can be as big as $O(n)$!

We could do O(n) before:

Sorted Array

\rightarrow Range Search:
$O(\log (n)) \vee$
\rightarrow Nearest Neighbors:
\rightarrow Insert:
\rightarrow Delete:
$O(\log (n))$
$O(n) \times$
$O(n) \times$
Sorted Linked List
\rightarrow Range Search:
\rightarrow Nearest Neighbors:
$O(n) \times$
$O(n) \times$
\rightarrow Insert:
\rightarrow Delete:

In search for balance

> The Binary Search Tree of n nodes which has height O($\log n$) is called a Balanced Binary Search Tree (BBST)
> To achieve $\mathrm{O}(\log n)$ time on all operations - we need to keep our tree balanced
$>$ We will perform local restructuring of the nodes to always keep the height of the tree $\mathrm{O}(\log n)$

Completing the tree

To make it easier to argue about balance - let's make each BST node have exactly 2 children
If there is no left/right child - we add a special NULL node

Redefining internal nodes

Now each node that stores a key becomes an internal node And each external (leaf) node is a NULL node which does not store a key

The height also changes accordingly

Each external node has height 0

Defining balance

> One possible definition:
For every internal node v, the heights of the children of v may differ by at most 1
$>$ That is, if a node v has children, x and y, then $|h(x)-h(y)| \leq 1$.
$>$ That implies that we must keep track of the current height for each node of the BBST

How the balance can be destroyed

We start with a perfectly balanced tree

How the balance can be destroyed

We insert key 2

The tree is still balanced

How the balance can be destroyed

We insert key 1
The root has 2 children x and y and the height of the corresponding subtrees differs by 2
If we now add 0 - we will make it even more unbalanced

How the balance can be destroyed

We do not leave the tree like that we rearrange the heavier branch that resulted from adding 1

If we rebalance on time, we will never need to deal with difference >2

Rebalancing

The imbalance in this case is caused by the newly added node 1 and is presented by the path 1, 2, 3 (3 being the first imbalanced node on this path)

We need to rearrange nodes 1,2,3
They all can be left in the same tree branch (all are < 5)
$1<2<3$: so if we pull 2 on top, then 1 will be its left child, and 3 its right child

Rebalancing: rotation

This method of rearrangement is called a rotation

It is also called a trinode restructuring

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing order: $\mathrm{x}<\mathrm{y}<\mathrm{z}$

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing order: $x<y<z$

Pull y to the top and make x its left child and z its right child

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

General trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them can be NULL) to x and z

General trinode restructuring: left-heavy

 subtree

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them can be NULL) to x and z

Update heights (locally: in constant time)

Trinode restructuring: right-heavy subtree the same idea

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them
can be NULL) to x and z
Update heights along this branch

Trinode restructuring: right-heavy subtree

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them
can be NULL) to x and z
Update heights along this branch

Trinode restructuring: right-left-heavy subtree: the same idea

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them can be NULL) to x and z

Update heights along this branch

Trinode restructuring: right-left-heavy subtree

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them can be NULL) to x and z

Update heights along this branch

Trinode restructuring: left-right-heavy subtree: the same idea

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them
can be NULL) to x and z
Update heights along this branch

Trinode restructuring: left-right-heavy subtree

The nodes x, y, z are in increasing order

Pull y to the top and make x its left child and z its right child

Reattach all 4 children (some of them can be NULL) to x and z

Update heights along this branch

AVL trees*

Definition

AVL tree is a Binary Search Tree with the following property: for every internal node v in AVL tree, the heights of the children of v differ by at most 1

I.e. if the children of v are x and y, then $|h(x)-h(y)| \leq 1$
*Named after inventors Adelson-Velsky and Landis

AVL tree: insertion

First, we perform regular insertion into BST and end up filling up one of the NULL nodes with the new value

Insert(4)

AVL tree: insertion

External node becomes a new internal node

After the insertion, some internal nodes may become unbalanced

AVL tree: rebalancing after insertion

We go up from the inserted node until we encounter the first unbalanced node v

Note that in order for a branch to become unbalanced, there are at least 2 nodes below v

AVL tree: rebalancing after insertion

We keep track of v and the 2 nodes encountered before we reach v, and we name them according to their relative order as x, y, z

AVL tree: rebalancing after insertion

We then perform a rotation moving y on top of x and z - according to trinode restructuring rules

AVL tree: rebalancing after insertion

Detach 4 children of x, y, z

AVL tree: rebalancing after insertion

Detach 4 children of x, y, z

AVL tree: rebalancing after insertion

Perform rotation

AVL tree: rebalancing after insertion

Reattach children

AVL tree: rebalancing after insertion

Update height of rebalanced nodes x, y or z

Note that the height of the children does not change and does not need to be updated

The entire time of insertion is still O(tree height)

AVL tree: insertion summary

The rebalancing is local and involves only x, y, z - thus in constant time
The heavier subtree height is reduced by 1 - restoring AVL property for the parent node

AVL tree: deletion - similar idea

By removing a node from AVL tree some nodes may become unbalanced
But this time the branch from which the node was removed becomes lighter than its sibling
We need to restructure the heavier sibling to reduce its height

AVL tree: rebalancing after deletion

We move up the tree from the current NULL node until we encounter an internal node which is unbalanced

AVL tree: rebalancing after deletion

Then we move into the heavier subtree choosing the child with the larger height

We produce 3 nodes x, y, z to be restructured

AVL tree: rebalancing after deletion

We perform rotation around y

This is accomplished with trinode restructuring as before

AVL tree: rebalancing after deletion

Trinode restructuring: detach children of x, y, z

AVL tree: rebalancing after deletion

Move y on top and reattach 4 children

AVL tree: rebalancing after deletion

We fixed the imbalance in left subtree by increasing the height of the right child of the root by 1

Theorem

AVL tree with n keys has height $\mathrm{O}(\log n)$

For the proof refer to Chapter 4.2 of the provided book chapter

Many more Balanced Search Trees exist

Red-Black trees: wikipedia link
Splay trees: wikipedia link
B-trees: wikipedia link

