
Maintaining Balance:

Balanced Binary Search Trees

(BBST)

[Review 02.07]
By Marina Barsky

Recap: Definition

Binary search tree is a binary tree with the following

property:

for each node with key x, all the nodes in its left

subtree have keys smaller than x, and all the keys in

its right subtree are greater than x.

3

1

2

5

4

C

A

B

E

D

Recap: Operations on BST

➢ Find (k)

➢ Successor (k)/Predecessor (k)

➢ Insert (k)

➢ Delete (k)

How long does each operation take?

Example: find (k)

find (5)

Total questions asked before we reach 5: 4

7

82

41 9

1063

5

Recap: node depth

6

4

2

1 3

5

8

7 9

Level 0

Level 1

Level 2

Level 3

Distance from the root:

how many edges to go from the root to a given node

depth = 0

depth = 1

depth = 2

depth = 3

Recap: height of a subtree rooted at

node v

63

42

21

10 30

50

81

70 90

Level 0

Level 1

Level 2

Level 3

Distance from the node to the bottom:

how many edges to go to the furthest leaf

depth = 0

depth = 1

depth = 2

depth = 3

Complexity: find (k)

find (5)

● The number of operations is the depth of the node in
question

● In the worst case bounded by the height of the tree

7

82

41 9

1063

5

Tree height = 4

Complexity: find (k)

find (5)

● The complexity of all BST operations is O(h)
● What is the height of the tree in terms of n - number of

nodes?

7

82

41 9

1063

5

h = 4

Complexity: O (n)

find (4)

The height can be as big as O(n) !

9

106

5

1

8

7

3

2

4

We could do O(n) before:

O(log(n)) V

O(log(n)) V

O(n) ×

O(n) ×

➔ Range Search:

➔ Nearest Neighbors:

➔ Insert:

➔ Delete:

Sorted Linked List

O(n) ×

O(n) ×

O(n) ×

O(n) ×

➔Range Search:

➔Nearest Neighbors:

➔Insert:

➔Delete:

Sorted Array

In search for balance

➢ The Binary Search Tree of n nodes which has height

O(log n) is called a Balanced Binary Search Tree (BBST)

➢ To achieve O(log n) time on all operations - we need to

keep our tree balanced

➢We will perform local restructuring of the nodes to

always keep the height of the tree O(log n)

Completing the tree

63

42

21

10 30

50

81

70

To make it easier to argue about balance - let’s make each BST

node have exactly 2 children

If there is no left/right child - we add a special NULL node

Redefining internal nodes

63

42

21

10 30

50

81

70

Now each node that stores a key becomes an internal node

And each external (leaf) node is a NULL node which does not

store a key

The height also changes accordingly

64

43

22

11 31

51

82

71

Each external node has height 0

Defining balance

➢ One possible definition:

For every internal node v, the heights of the children of v may

differ by at most 1

➢ That is, if a node v has children, x and y, then |h(x) − h(y)| ≤ 1.

➢ That implies that we must keep track of the current height for

each node of the BBST

How the balance can be destroyed

We start with a perfectly balanced

tree

52

9131

How the balance can be destroyed

We insert key 2

The tree is still balanced

53

9132

21

How the balance can be destroyed

We insert key 1

The root has 2 children x and y and

the height of the corresponding

subtrees differs by 2

If we now add 0 - we will make it even

more unbalanced

54

9133

22

11

0

How the balance can be destroyed

We do not leave the tree like that -

we rearrange the heavier branch that

resulted from adding 1

If we rebalance on time, we will never

need to deal with difference > 2

54

9133

22

11

Rebalancing

The imbalance in this case is caused by

the newly added node 1 and is

presented by the path 1, 2, 3 (3 being

the first imbalanced node on this path)

We need to rearrange nodes 1,2,3

They all can be left in the same tree

branch (all are < 5)

1<2<3: so if we pull 2 on top, then 1 will

be its left child, and 3 its right child

54

9133

22

11

Rebalancing: rotation

This method of rearrangement is called

a rotation

It is also called a trinode restructuring

54

91

31

22

11

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing

order: x < y < z
z

y

x

1
2

3

4

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing

order: x < y < z

Pull y to the top and make x its left

child and z its right child

z

y

x

1
2

3

4

Trinode restructuring: left-heavy subtree

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child
z

y

x

1
2

3 4

General trinode restructuring: left-heavy

subtree

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

z

y

x

1
2

3 4

General trinode restructuring: left-heavy

subtree

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Update heights (locally: in constant

time)

z

y

x

1
2

3 4

Trinode restructuring: right-heavy subtree

the same idea

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Update heights along this branch

x

y

z

3
4

2

1

y

Trinode restructuring: right-heavy subtree

x z

3
4

21

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Update heights along this branch

Trinode restructuring: right-left-heavy

subtree: the same idea

x

y

z

3
2

4

1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Update heights along this branch

Trinode restructuring: right-left-heavy

subtree

x

y

z

3
2

4
1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Update heights along this branch

Trinode restructuring: left-right-heavy

subtree: the same idea

x

y

z

32

4

1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Update heights along this branch

Trinode restructuring: left-right-heavy

subtree

x

y

z

32
4

1

The nodes x, y, z are in increasing

order

Pull y to the top and make x its left

child and z its right child

Reattach all 4 children (some of them

can be NULL) to x and z

Update heights along this branch

Definition

AVL tree is a Binary Search Tree

with the following property: for

every internal node v in AVL tree, the

heights of the children of v differ by

at most 1

I.e. if the children of v are x and y,

then |h(x) − h(y)| ≤ 1

83

9162

51 71

v

x y

*Named after inventors Adelson-Velsky and Landis

AVL trees*

AVL tree: insertion

First, we perform regular insertion

into BST and end up filling up one of

the NULL nodes with the new value

84

9162

51 71

Insert(4)

AVL tree: insertion

External node becomes a new

internal node

After the insertion, some internal

nodes may become unbalanced

84

9163

52 71

41

AVL tree: rebalancing after insertion

We go up from the inserted node

until we encounter the first

unbalanced node v

Note that in order for a branch to

become unbalanced, there are at

least 2 nodes below v

84

9163

52 71

41

v

AVL tree: rebalancing after insertion

We keep track of v and the 2 nodes

encountered before we reach v, and

we name them according to their

relative order as x, y, z

84

9163

52 71

41

x

y

z

AVL tree: rebalancing after insertion

We then perform a rotation moving y

on top of x and z - according to

trinode restructuring rules

84

9163

52 71

41

x

y

z

AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 84

9163

52 71

41

x

y

z

Child 1 Child 2

Child 3

Child 4

AVL tree: rebalancing after insertion

Detach 4 children of x, y, z 84

91

63

52

7141

x

y

z

Child 1 Child 2 Child 3 Child 4

AVL tree: rebalancing after insertion

Perform rotation

84

91

63

52

7141

x

y

z

Child 1 Child 2 Child 3 Child 4

AVL tree: rebalancing after insertion

Reattach children

84

91

63

52

7141

x

y

z

Child 1
Child 2

Child 3 Child 4

AVL tree: rebalancing after insertion

Update height of rebalanced

nodes x, y or z

Note that the height of the

children does not change and

does not need to be updated

82

91

63

52

7141

x

y

z

The entire time of insertion is still O(tree height)

AVL tree: insertion summary

The rebalancing is local and involves only x, y, z - thus in constant
time
The heavier subtree height is reduced by 1 - restoring AVL
property for the parent node

82

91

63

52

7141

x

y

z

84

9163

52 71

41

x

y

z

AVL tree: deletion - similar idea

83

9162

51 71

By removing a node from AVL tree some nodes may become
unbalanced
But this time the branch from which the node was removed
becomes lighter than its sibling
We need to restructure the heavier sibling to reduce its height

83

62

51 71

0

Delete 9

AVL tree: rebalancing after deletion

We move up the tree from the
current NULL node until we
encounter an internal node which is
unbalanced

83

62

51 71

0

AVL tree: rebalancing after deletion

Then we move into the heavier
subtree choosing the child with the
larger height

We produce 3 nodes x, y, z to be
restructured

83

62

51 71

0
x

y

z

AVL tree: rebalancing after deletion

We perform rotation around y

This is accomplished with trinode
restructuring as before

83

62

51 71

0
x

y

z

AVL tree: rebalancing after deletion

Trinode restructuring: detach
children of x, y, z

83

62

51 71

0
x

y

z

Child 1

Child 2 Child 3

Child 4

AVL tree: rebalancing after deletion

Move y on top and reattach 4
children

8162

51

73

x

y

z

Child 1
Child 2 Child 3 Child 4

AVL tree: rebalancing after deletion

8162

51

73

x

y

z

Child 1
Child 2 Child 3 Child 4

83

62

51 71

0
x

y

z

Child 1

Child 2 Child 3

Child 4

We fixed the imbalance in left subtree by increasing the height of
the right child of the root by 1

AVL tree with n keys has height O(log n)

Theorem

For the proof refer to Chapter 4.2 of the provided
book chapter

Many more Balanced Search Trees exist

Red-Black trees: wikipedia link

Splay trees: wikipedia link

B-trees: wikipedia link

...

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Splay_tree
https://en.wikipedia.org/wiki/B%2B_tree

