
Modeling using Graph ADT

Lecture 03.01
By Marina Barsky

[What is a graph?]

A graph G = (V, E) is an Abstract Data Type that consists of 2 sets:

• Set of objects (vertices, nodes)

V = {A, B, C, D, E}

• Relation on set of objects (edges)

E = {(A,B), (A,C), (A,E), (B.D), (C,D), (C,E)}

Running time of Graph algorithms uses two numbers:

• n = |V|

• m = |E|

A

B

C

D

E

Graphs can model many things

Trivial:

• Mobile networks

• Computer networks

• Social networks

Non-trivial:

• Web pages

• States of the game

• …

Graph: airlines

• Is there a direct flight from A to D?

• With one stop?

• With exactly two stops?
A

B

C

D

E

Graph of flights between 5 cities

Graph: airlines

Facebook graph

Chandler

Joey

Facebook graph

Directed graph: one-way streets

Directed graph: followers

Directed graph: citations

P Cliften

W Olivas

Directed graph: citations

Directed graph: dependencies

nlib.h

tgmath.h

Directed graph: dependencies

Linked Open Data Diagram

DBpedia: structured cross-domain knowledge

Media

NY Times

Linked Open Data Diagram

Schizophrenia Protein–Protein

Interaction (PPI)

Schizophrenia Protein–Protein

Interaction (PPI)

CNTN4

SRPK2

Explicit vs Implicit Graph of states

● A graph is explicit if all its vertices and edges are stored.
● Often we work with an implicit graph which is conceptual or

unexplored.

The Rubik's Cube has 43 quintillion states.
It can be solved without explicitly listing all vertices

(states)

There are only 39 = 19,683 different states in Tic-Tac-

Toe. We can store the entire graph and compute the

optimal strategy as a path through this graph

https://en.wikipedia.org/wiki/Rubik%27s_Cube

Use case 1:
Solving puzzles

With graphs!

Paolo Guarini di Forli, Italy

15th - 16th Century

Guarini's Puzzle

There are four knights on the 3×3 chessboard: the two white knights are at the
two upper corners, and the two black knights are at the two bottom corners of
the board.

The goal is to switch the knights in the minimum number of moves so that the
white knights are at the bottom corners and the black knights are at the upper
corners.

Paolo Guarini

di Forli, Italy

15th - 16th

Century

Chess Knight

A chess knight can move in an L shape in any direction

A chess knight can move in an L shape in any direction

Chess Knight

Graph: nodes

1 2 3

4 5

6 7 8

Each position is a node in a graph

Graph: edges

1 2 3

4 5

6 7 8

There is an edge between the nodes if you can go

from 1 node to another by 1 knight move

1 2 3

4 5

6 7 8

Graph: edges

1 2 3

4 5

6 7 8

Does it help to solve the puzzle?

1 2 3

4 5

6 7 8

Unfold the graph!

1 2 3

4 5

6 7 8

All the nodes are on a circle

1 2 3

4 5

6 7 8

1

23

4

5

67

8

Solution

Do you see it now?

1

23

4

5

67

8

1 2 3

4 5

6 7 8

1

23

4

5

67

8

1 2 3

4 5

6 7 8

Solution

Move around the circle following legal edges

1

23

4

5

67

8

1

23

4

5

67

8

Solution

Until knights are in desired positions

1

23

4

5

67

8

1

23

4

5

67

8

Try it out
http://barsky.ca/knights/

http://barsky.ca/knights/

Puzzle 2. Start configuration

Puzzle 2. End configuration

Puzzle 3. Start configuration

Puzzle 3. End configuration

Use case 2:
Genome assembly

With graphs!

Euler’s dilemma:

Can I take a walk and visit each

bridge exactly once?

Leonhard Euler

1707 - 1783

Seven bridges of Königsberg

Euler’s path problem

Is there a path which visits every edge of the graph

exactly once?

Seven bridges of Königsberg

B

A

C

D

Modeled as Graph

Eulerian Path

START FINISH

Necessary condition: all but START and FINISH

vertices must have even degrees. Why?

Seven bridges of Königsberg

B

A

C

D

Is there an Eulerian Path

through these seven

bridges?

Königsberg, 17-th century

Five Bridges of Kaliningrad

A

B

C

D

B

C

A

D

Königsberg (Kaliningrad), 21-th century

Is there an Eulerian Path

through these five

bridges?

Five Bridges of Kaliningrad

A

B

C

D

B

C

A

D

Königsberg (Kaliningrad), 21-th century

B and D have odd degree

If there exists an Eulerian path, B

and D must be START and FINISH

An Eulerian cycle (circuit) visits every edge

exactly once and returns to the starting vertex.

• The definition works for both directed and undirected

graphs

• A cycle must have the same starting and ending vertex

• While in a path the starting and ending node should

not necessarily be the same (but they might be the

same). So the cycle is a special case of a path.

Eulerian Cycle

Eulerian cycle

If there exists an Eulerian cycle,

all vertices must have even

degrees

A

B

C

D

B

C

A

D

Criteria for Eulerian Cycle (Path)

Theorem

A connected undirected graph contains an

Eulerian cycle, if and only if the degree of

every node is even.

Example

Non-Eulerian graph Eulerian graph

Example

Non-Eulerian graph Eulerian graph

1

4

5

6

7

11
10

2

3

9

8

Criteria for Eulerian cycle (path)

Theorem
A connected undirected graph contains an

Eulerian cycle, if and only if the degree of

every node is even.

Theorem
A strongly connected directed graph contains

an Eulerian cycle, if and only if, for every

node, its in-degree is equal to its out-degree.

Balanced directed graph

The proof of existence of an Eulerian cycle can be

transformed into an efficient algorithm for

constructing it

Algorithm for finding Eulerian
Cycle (Path)

Finding Eulerian Path: algorithm

• If there are 0 odd vertices, start anywhere

If there are 2 odd vertices, start at one of them.

• Follow edges one at a time

If you have a choice between a bridge and a non-bridge, always

choose the non-bridge: “don’t burn bridges“ so that you can

come back to a vertex and traverse remaining edges

• Remove followed edge (or mark as processed)

• Stop when you run out of edges

Example: undirected graph

Two vertices with odd degree – choose

any of them to start

Example

Eulerian Path: (2,0), (0,1), (1,2), (2,3)

Example: Directed Graph

a

b c

d

e

fgh

start walking from some node

(all are balanced)

a

b c

d

e

fgh

Path so far: a→b

Example: Directed Graph

a

b c

d

e

fgh

Path so far: a→b→c

Example: Directed Graph

a

b c

d

e

fgh

Path so far: a→b→c→h

We cannot go to a: h-a is a bridge!

Example: Directed Graph

a

b c

d

e

fgh

Path so far: a→b→c→h

Example: Directed Graph

a

b c

d

e

fgh

Path so far: a→b→c→h→g

Example: Directed Graph

a

b c

d

e

fgh

Path so far: a→b→c→h→g→c

Example: Directed Graph

a

b c

d

e

fgh

Path so far: a→b→c→h→g→c →d

Example: Directed Graph

a

b c

d

e

fgh

Path so far: a→b→c→h→g→c →d …

Example: Directed Graph

Hamiltonian Cycle

Definition
A Hamiltonian cycle visits every

node of a graph exactly once

and returns to the start node.

As before, the Hamiltonian path is not required to end at the start
node, and a cycle is a special case of a path.

Sir William Rowan Hamilton,

1805–1865

The icosian game

Example: Hamiltonian Path

(and Cycle)

Find Hamiltonian Cycle 1

Find Hamiltonian Cycle 2

Hamiltonian path: simple criteria?

• There are some existence theorems about Hamiltonian

paths, but they don’t give a complete characterization

of graphs containing Hamiltonian paths (cycles)

• As a result, no polynomial-time algorithm is known for

finding Hamiltonian paths!

Genome Assembly problem

Genome Assembly problem:

toy example

Find a string whose all substrings of length 3

are:

AGC, ATC, CAG, CAT, CCA, GCA, TCA, TCC.

How is this related to paths in graphs?..

All Substrings of Length 3

DISCRETE

DIS

ISC

SCR

CRE

RET

ETE

Every two neighbor 3-substrings have

a common part of length 2, called an overlap

Finding a Permutation

• Goal: Find a string whose all substrings of

length 3 are AGC, ATC, CAG, CAT, CCA,

GCA, TCA, TCC

• Hence, we need to order these 3-substrings

such that the overlap between any two

consecutive substrings is equal to 2

Overlap Graph

Nodes are substrings: short DNA sequence reads

AGC

ATCCAT

CCA

GCA

TCA

TCC

CAG
AGC

ATC

CAG

CAT

CCA

GCA

TCA

TCC

Overlap Graph

There is an edge from s
1

to s
2

if s
1
[2:3]=s

2
[1:2]

AGC

ATCCAT

CCA

GCA

TCA

TCC

CAG
AGC

ATC

CAG

CAT

CCA

GCA

TCA

TCC

Hamiltonian path in the Overlap Graph

TCA

AGC

ATCCAT

CCA

GCA

TCA

TCC

CAG

TCAG …

Hamiltonian path in the Overlap Graph

AGC

ATCCAT

CCA

GCA

TCA

TCC

CAG

We solved Genome Assembly

Problem!

• We modeled the problem of genome assembly as

Hamiltonian path problem in the overlap graph!

• We modeled the problem of genome assembly as

Hamiltonian path problem in the overlap graph!

• But unfortunately we don’t have efficient

algorithms for solving the Hamiltonian path

problem!

• The approach is useless for the case when there

are thousands or millions of input sub-strings

We solved Genome Assembly

Problem!

Different approach
(De Bruijn; Pevzner, Tang, Waterman)

State-of-the-art genome assemblers

• In the overlap graph, each node corresponds to

the input string

• Let’s instead represent each edge by the same

string, broken into 2 nodes (overlaps):

E.g., represent the string CAT as an edge

CA → AT

De Bruijn Graph

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

now, we need to find an order of edges

De Bruijn Graph

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

that is, an Eulerian path

De Bruijn Graph

TCC

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

TCCA

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

TCCAG

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

TCCAGC

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

TCCAGCA

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

TCCAGCAT

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

TCCAGCATC

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

De Bruijn Graph

TCCAGCATCA

AG

AGC, ATC, CAG, CAT, CCA, GCA,

TCA, TCC

CA AT

CC

GC TC

• Eulerian cycle visits every edge exactly once (we

have an efficient solution)

• Hamiltonian cycle visits every node exactly once

(efficient solution is unknown)

• We were able to solve the problem of Genome

Assembly just by changing the graph model!

Genome Assembly: summary

