Graph Terminology

Review 03.02

By Marina Barsky

[What is a graph?]

A graph G = (V, E) is an Abstract Data Type that consists of 2 sets:

• Set of objects (*vertices*, nodes)

V = {A, B, C, D, E}

• Relation on set of objects (*edges*)

E = {(A,B), (A,C), (A,E), (B.D), (C,D), (C,E)}

Running time of Graph algorithms uses **two** input sizes:

- *n* = |V|
- *m* = |E|

[Vertices and edges]

- Edge *e* connects vertices *u* and *v*
- Vertices *u* and *v* are end points of edge *e*
- Vertex *u* and edge *e* are incident
- Two edges are also called incident, if they are incident to the same vertex
- *Vertices u* and *v* are adjacent
- *Vertices u* and *v* are neighbors
- This is a dictionary of undirected graph

[The degree of a vertex]

- The degree of a vertex is the number of its incident edges.
 I.e., the degree of a vertex is the number of its neighbors
- The degree of a vertex v is denoted by deg(v)
- The degree of a graph is sum of degree of its vertices. The degree of undirected graph with *m* edges is 2*m*

The degree of v is 6: deg(v) = 6

The degree of v_6 is 1: deg(v_6) = 1

The degree of *this graph*: deg(G) = 2m = 12

[Directed graphs]

Nodes: {A,B,C,D}

These two graphs are different

[Subgraphs]

A *subgraph* of a graph is obtained by deleting any subset of vertices and edges.

• If a vertex is deleted, then all of its incident edges are also deleted.

A subgraph is *spanning* if it includes all of the vertices (only some edges are deleted).

A non-spanning subgraph.

An *induced subgraph* is obtained by deleting any subset of vertices. It is denoted by G[U] where U is the set of vertices that are not deleted.

[Walks and Paths]

- A walk in a graph is a sequence of incident edges
- The length of a walk is the number of edges in it
- A path is a walk where all edges are distinct
- A simple path is a walk where all vertices are distinct

A walk of length 6: (*e*₁, *e*₂, *e*₄, *e*₅, *e*₃, *e*₁)

A walk of length 6: $(e_1, e_2, e_4, e_5, e_3, e_1)$ Not a path: uses e_1 twice

A path of length 4: (e_7, e_6, e_4, e_5)

A path of length 4: (e_7, e_6, e_4, e_5) Not a simple path: visits v_2 twice

A simple path of length 4: (e_7, e_6, e_2, e_1)

It is sometimes more convenient to specify a path (walk) by a list of vertices rather than edges

A path of length 4: $(v_2, v_1, v_5, v_4, v_6)$

The length of the path

In general, a *path* of length k is a sequence of k incident edges (and k+1 vertices):

 v_1 , (v_1, v_2) , v_2 , (v_2, v_3) , v_3 , ..., v_k , (v_k, v_{k+1}) , v_{k+1} where $v_i \neq v_j$ if $i \neq j$.

In other words, there are k+1 vertices and k edges, and each edge connects adjacent vertices on the path.

The *length of a path* is the number of traversed edges.

A path from u to v is a *shortest path* if there is no shorter path from u to v. For example, there are two shortest paths from f to e above.

Directed Paths

In a directed graph each edge is oriented in one of two ways with respect to a path:

- The edge is *forward* if it has the form v_i , (v_i, v_{i+1}) , v_{i+1} .
- The edge is *backward* if it has the form v_i , (v_{i+1}, v_i) , v_{i+1} .

A highlighted path a, (a,f), f, (f,d), d, (d,c), c where (f,d) is the only backwards edge. A directed path from a to c.

A path is a *directed path* if every edge is a forward edge.

Cycles

- A cycle (sometimes called a circuit) in a graph is a path where the first vertex is the same as the last one
- All the edges in a cycle are distinct
- A simple cycle is a cycle where all vertices except for the first=last are distinct

A cycle of length 6: (*e*₂, *e*₃, *e*₈, *e*₄, *e*₇, *e*₆)

A cycle of length 6: $(e_2, e_3, e_8, e_4, e_7, e_6)$ Not a simple cycle: visits v_5 three times

A simple cycle of length 4: (e_5, e_4, e_2, e_3)

Trees and Forests

A *tree* is a connected acyclic graph. That is, each node is connected to some other node, and there are no cycles.

A *forest* is an acyclic graph (i.e. its connected components are trees.)

A *leaf* is a vertex of degree one, and the other vertices are *internal nodes*.

A tree with four leaves and four internal vertices.

A forest with two component trees.

Lemmas:

- A tree on *n* vertices has *n*-1 edges.
- A forest with *n* vertices and *c* components has *n*-*c* edges.
- There is a unique path between any two vertices within a tree.

Spanning Trees

A *spanning tree* is a subgraph that is spanning and is a tree.

A connected graph.

A spanning tree of the graph.

Lemma:

A graph is connected if and only if it has a spanning tree.

Rooted Trees

A **rooted tree** has a specified **root** vertex.

Every edge joins a *parent* and a *child* vertex, where the parent is closer to the root.

A rooted tree from vertex c. Edges are directed outward from the root (i.e. parent to child). A rooted tree from vertex c. Edges are directed inward to the root (i.e. child to parent).

Sometimes we direct edges *outward* from the root or *inward* to the root. When rooted trees are drawn the root is typically placed at the top and every parent is placed above its children.

Data Structures

Representing Graph as Edge Set (Edge List)

The most straightforward way of storing graphs is to create a set of all graph vertices, and a set of all edges in form of tuples:

$$V = \{a,b,c,d,e,f\}$$

E = {(a,b), (a,c), (b,c), (c,d), (d,e), (d,f), (e,f)}

- Edge lists are simple, but if we want to find whether the graph contains a particular edge, we have to search through the edge list.
- If the edges appear in the edge list in no particular order, that's a linear search through *m* edges.

Question: How would you organize an edge list to make searching for a particular edge take O(log m) time?

[Adjacency Lists and Adjacency Matrices]

Graphs are commonly stored as *adjacency lists* or *adjacency matrices*.

- In undirected graphs each edge is stored twice.
- Non-simple graphs use adjacency counts instead of 0/1 in the adjacency matrix.
- Non-simple graphs repeat vertices or use edge numbers in the adjacency list.

Graph

а	b, c
b	a, c
С	a, b, d
d	c, e, f
е	d, f
f	d, e

	а	b	С	d	е	f
а	0	1	1	0	0	0
b	1	0	1	0	0	0
С	1	1	0	1	0	0
d	0	0	1	0	1	1
е	0	0	0	1	0	1
f	0	0	0	1	1	0

Adjacency Matrix

Efficient Representation

The data structure used to store a graph affects the efficiency of algorithms running on it.

Task	Winner
To test if (x,y) is in graph?	
Find a degree of a vertex	
Store a sparse graph: m = O(n)	
Store a dense graph: $m = O(n^2)$	
Insert/delete an edge	
Traverse the graph	
Most problems	

n = |V|, m = |E|

Efficient Representation

The data structure used to store a graph affects the efficiency of algorithms running on it.

Task	Winner		
To test if (x,y) is in graph?	Adj. matrix O(1)		
Find a degree of a vertex	Adj. list O(d) vs. O(n)		
Store a sparse graph: m = O(n)	Adj. list (n + m) vs. n ²		
Store a dense graph: $m = O(n^2)$	Adj. matrix (save on links)		
Insert/delete an edge	Adj. matrix O(1) vs. O(d)		
Traverse the graph	Adj. list (n + m) vs. n²		
Most problems	Adj. list		