
Graph Terminology
Review 03.02

By Marina Barsky



[What is a graph?]

A graph G = (V, E) is an Abstract Data Type that consists of 2 sets:

• Set of objects (vertices, nodes) 

V = {A, B, C, D, E}

• Relation on set of objects (edges) 

E = {(A,B), (A,C), (A,E), (B.D), (C,D), (C,E)}

Running time of Graph algorithms uses two input sizes:

• n = |V|

• m = |E|

A

B

C

D

E



u                        v
e

• Edge e connects vertices u and v

• Vertices u and v are end points of edge e

• Vertex u and edge e are incident

• Two edges are also called incident, if they are incident 
to the same vertex

• Vertices u and v are adjacent

• Vertices u and v are neighbors

• This is a dictionary of undirected graph

[Vertices and edges]



[The degree of  a vertex]

● The degree of a vertex is the number of its incident edges.

I.e., the degree of a vertex is the number of its neighbors

● The degree of a vertex v is denoted by deg(v)

● The degree of a graph is sum of degree of its vertices.

The degree of undirected graph with m edges is 2m



v
1

v
2

v
3

v
4

The degree of v is 6: deg(v) = 6

The degree of v6 is 1: deg(v6) = 1

v

Example

v
6

v
5

The degree of this graph: deg(G) = 2m = 12



Nodes: {A,B,C,D}

A

C                           B

D

[Directed graphs]

Edges (ordered pairs):

{(A,C),(D,A),(B,D),(C,B)}

A D

C                           B

Edges (ordered pairs):

{(C,A),(D,A),(B,D),(C,B)}

These two graphs are different



[Subgraphs]

A subgraph of a graph is obtained by deleting any subset of vertices and edges.
● If a vertex is deleted, then all of its incident edges are also deleted.

A subgraph is spanning if it includes all of the vertices (only some edges are 
deleted).

An induced subgraph is obtained by deleting any subset of vertices.
It is denoted by G[U] where U is the set of vertices that are not deleted.

A spanning subgraph.A graph.

a f

c d

b e

gh

An induced subgraph 
G[{a, b, c, h, f, g}].

a f

c

b

gh

A non-spanning subgraph.

a f

c d

b e

gh



[Walks and Paths]

• A walk in a graph is a sequence of incident edges

• The length of a walk is the number of edges in it

• A path is a walk where all edges are distinct

• A simple path is a walk where all vertices are distinct



Example 1

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4

e
3

e
2

A walk of length 6: (e1, e2, e4, e5, e3, e1)



Example 1

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4

e
3

e
2

A walk of length 6: (e1, e2, e4, e5, e3, e1)
Not a path: uses e1 twice



A path of length 4: (e7, e6, e4, e5)

Example 2

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4

e
3

e
2



A path of length 4: (e7, e6, e4, e5)
Not a simple path: visits v2 twice

Example 2

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4

e
3

e
2



A simple path of length 4: (e7, e6, e2, e1)

Example 3

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4

e
3

e
2



It is sometimes more convenient to specify a path (walk) by a list 
of vertices rather than edges

A path of length 4: (v2, v1, v5, v4, v6)

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4

e
3

e
2



The length of the path

In general, a path of length k is a sequence of k incident edges (and k+1 vertices):

v1,  (v1, v2),  v2,  (v2, v3),  v3,  …,  vk,  (vk, vk+1),  vk+1 where vi ≠ vj if i ≠ j.

In other words, there are k+1 vertices and k edges, and each edge connects 
adjacent vertices on the path.

The length of a path is the number of traversed edges.

A path from u to v is a shortest path if there is no shorter path from u to v.
For example, there are two shortest paths from f to e above.

This is not a path since it is disconnected and 
also d appears multiple times.

A highlighted path
a, (a,f), f, (f,d), d, (d,c), c

a f

c d

b e

gh

a f

c d

b e

gh



Directed Paths

In a directed graph each edge is oriented in one of two ways with respect to a 
path:
● The edge is forward if it has the form vi, (vi, vi+1), vi+1.
● The edge is backward if it has the form vi, (vi+1, vi), vi+1.

A path is a directed path if every edge is a forward edge.  

A directed path from a to c.A highlighted path
a, (a,f), f, (f,d), d, (d,c), c

where (f,d) is the only backwards edge.

a f

c d

b e

gh

a f

c d

b e

gh



Cycles

● A cycle (sometimes called a circuit) in a graph is a path where 

the first vertex is the same as the last one

● All the edges in a cycle are distinct

● A simple cycle is a cycle where all vertices  except for the 

first=last are distinct 



Example 1

A cycle of length 6: (e
2

, e
3

, e
8

, e
4

, e
7

, e
6
)

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4e
3

e
2



Example 1

A cycle of length 6: (e
2
, e

3
, e

8
, e

4
, e

7
, e

6
)

Not a simple cycle: visits v
5 

three times

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4e
3

e
2



Example 2

A simple cycle of length 4: (e
5

, e
4

, e
2

, e
3
)

v
1

v
2

v
3

v
4

v
5

v
6

e
5

e
4

e
3

e
2



Trees and Forests
A tree is a connected acyclic graph.  That is, each node is connected to some other 
node, and there are no cycles.
A forest is an acyclic graph (i.e. its connected components are trees.)

A leaf is a vertex of degree one, and the other vertices are internal nodes.

A forest with two component trees.

Lemmas:
● A tree on n vertices has n-1 edges.
● A forest with n vertices and c components has n-c edges.
● There is a unique path between any two vertices within a tree.

A tree with four leaves and four internal vertices.

a f

c d

b e

gh

a f

c d

b e

gh



a f

c d

b e

gh

Spanning Trees

A spanning tree is a subgraph that is spanning and is a tree.

A spanning tree of the graph.

Lemma:
A graph is connected if and only if it has a spanning tree.

A connected graph.

a f

c d

b e

gh

a f

c d

b e

gh



Rooted Trees

A rooted tree has a specified root vertex.
Every edge joins a parent and a child vertex, where the parent is closer to the 
root.

A rooted tree from vertex c.
Edges are directed inward to the root (i.e. 

child to parent).

Sometimes we direct edges outward from the root or inward to the root.  
When rooted trees are drawn the root is typically placed at the top and every 
parent is placed above its children.

A rooted tree from vertex c.
Edges are directed outward from the root (i.e. 

parent to child).

a f

c d

b e

gh

a f

c d

b e

gh



Data Structures



Representing Graph as Edge Set (Edge List)

The most straightforward way of storing graphs is to create a set of all graph 
vertices, and a set of all edges in form of tuples:

a f

c d

b e

V = {a,b,c,d,e,f}

E = {(a,b), (a,c), (b,c), (c,d), (d,e), (d,f), (e,f)}

● Edge lists are simple, but if we want to find 

whether the graph contains a particular 

edge, we have to search through the edge 

list. 

● If the edges appear in the edge list in no 

particular order, that's a linear search 

through m edges. 

Question: How would you organize an edge list to make searching for a particular 

edge take O(log m) time?



[Adjacency Lists and Adjacency Matrices]

Graphs are commonly stored as adjacency lists or adjacency matrices.
● In undirected graphs each edge is stored twice.
● Non-simple graphs use adjacency counts instead of 0/1 in the adjacency 

matrix.
● Non-simple graphs repeat vertices or use edge numbers in the adjacency list.

Adjacency Matrix

Graph

Adjacency List

a f

c d

b e

a b c d e f

a 0 1 1 0 0 0

b 1 0 1 0 0 0

c 1 1 0 1 0 0

d 0 0 1 0 1 1

e 0 0 0 1 0 1

f 0 0 0 1 1 0

a b, c

b a, c

c a, b, d

d c, e, f

e d, f

f d, e



Efficient Representation

The data structure used to store a graph affects the efficiency of 
algorithms running on it.

Task Winner

To test if (x,y) is in graph?

Find a degree of a vertex

Store a sparse graph: m = O(n)

Store a dense graph: m = O(n2)

Insert/delete an edge

Traverse the graph

Most problems

n = |V|,  m = |E|



Efficient Representation

The data structure used to store a graph affects the efficiency of 
algorithms running on it.

Task Winner

To test if (x,y) is in graph? Adj. matrix O(1)

Find a degree of a vertex Adj. list O(d) vs. O(n)

Store a sparse graph: m = O(n) Adj. list (n + m) vs. n2

Store a dense graph: m = O(n2) Adj. matrix (save on links)

Insert/delete an edge Adj. matrix O(1) vs. O(d)

Traverse the graph Adj. list (n + m) vs. n2

Most problems Adj. list


